ID
int64
1
1.07k
Comment
stringlengths
8
1.13k
Code
stringlengths
10
4.28k
Label
stringclasses
4 values
Source
stringlengths
21
21
File
stringlengths
4
82
801
create one index of political engagement using: interest, media reception, and political action
polit_eng = c("polintr_r_s", "nwspol_s", "polit_action_s") data8$polit_eng = rowMeans(data8[polit_eng], na.rm = TRUE) mean(data8$polit_eng, na.rm = TRUE) # 0.22 sd(data8$polit_eng, na.rm = TRUE) # 0.14 psych::alpha(data8[polit_eng]) # 0.39 data8$polit_eng_c = c(scale(data8$polit_eng, center = TRUE, scale = FALSE)) # center
Data Variable
https://osf.io/k853j/
ESS_openness_2016.R
802
Calculate values scores for PVQ recoding PVQ items (ESS uses 1 as "like me" and 6 "totally not like me)
data8$ipcrtiv_r = 7 - data8$ipcrtiv data8$imprich_r = 7 - data8$imprich data8$ipeqopt_r = 7 - data8$ipeqopt data8$ipshabt_r = 7 - data8$ipshabt data8$impsafe_r = 7 - data8$impsafe data8$impdiff_r = 7 - data8$impdiff data8$ipfrule_r = 7 - data8$ipfrule data8$ipudrst_r = 7 - data8$ipudrst data8$ipmodst_r = 7 - data8$ipmodst data8$ipgdtim_r = 7 - data8$ipgdtim data8$impfree_r = 7 - data8$impfree data8$iphlppl_r = 7 - data8$iphlppl data8$ipsuces_r = 7 - data8$ipsuces data8$ipstrgv_r = 7 - data8$ipstrgv data8$ipadvnt_r = 7 - data8$ipadvnt data8$ipbhprp_r = 7 - data8$ipbhprp data8$iprspot_r = 7 - data8$iprspot data8$iplylfr_r = 7 - data8$iplylfr data8$impenv_r = 7 - data8$impenv data8$imptrad_r = 7 - data8$imptrad data8$impfun_r = 7 - data8$impfun
Data Variable
https://osf.io/k853j/
ESS_openness_2016.R
803
evaluate goodness of fit of psychometric function using deviance test
d_fit <-{} for(i in unique(d$Subject)){ m_1 <- glm(Response ~ JumpSize * Velocity +BlinkDuration , d[d$Subject==i & d$cond1==1,], family=binomial(probit)) m_0<- glm(Response ~ Velocity +BlinkDuration , d[d$Subject==i & d$cond1==1,], family=binomial(probit)) LRT <- anova(m_0, m_1,test="LRT") d_fit <- rbind(d_fit, data.frame(id=i, D=LRT$Deviance[2], df=LRT$Df[2], p=LRT$`Pr(>Chi)`[2])) } print(d_fit,digits=2,row.names=F) round(d_fit$p,digits=10)
Statistical Test
https://osf.io/f6qsk/
analysis_exp2.R
804
use lmList to fit individual GLM models in one go
mo <- lmList(Response ~ cond1 * JumpSize * Velocity +bdur:cond1 | Subject, d, family=binomial(probit))
Statistical Modeling
https://osf.io/f6qsk/
analysis_exp2.R
805
visualize Bayes factors and parameter estimates
par(mfrow=c(1,2)) slope_bdur <- B[,8] / (((B[,3]+B[,5]) + (B[,3]+B[,7]+B[,5]+B[,9]))/2) slope_bayes <- outB$beta_5 / (((outB$beta_2) + (outB$beta_2+outB$beta_4))/2)
Visualization
https://osf.io/f6qsk/
analysis_exp2.R
806
sanity check to ensure that we get same estimates from frequentist or Bayesian analysis
plot(slope_bdur, slope_bayes, ylab="slope (Bayesian)",xlab="slope (frequentist)", pch=19) abline(a=0,b=1,lty=2) cor.test(slope_bdur, slope_bayes)
Statistical Test
https://osf.io/f6qsk/
analysis_exp2.R
807
n: sample size of each study simtot: number of simulations seed 1 Compute d33, ncp33 and df for the original sample
d33=pwr.t.test(n=n,sig.level=0.05,power=1/3,type="two.sample")$d ncp33=sqrt(n/2)*d33 df=2*n-2
Data Variable
https://osf.io/ujpyn/
[2]R-AnswerstoRound3Reviews-Powertoacceptflatwhentrueeffectiszeroacross24studies.R
808
point estimate p hat (just mean average of coefficients)
pe <-mean(cors)
Data Variable
https://osf.io/9jzfr/
metaBigFive.R
809
next, we use the bridge_sampler() function which will stabilize the calculated BFs see Schad et al 2022 https://psycnet.apa.org/doi/10.1037/met0000472
model.intox.seq.bf <- bridge_sampler(model.intox.seq, silent = TRUE) model.intox.seq.null.bf <- bridge_sampler(model.intox.seq.null, silent = TRUE)
Statistical Modeling
https://osf.io/rh2sw/
bayes.ema.tutorial.analysis.R
810
figure out which columns contain NAs
missing_cols <- colSums(is.na(data.conseq)) > 0 print(names(data.conseq)[missing_cols])
Data Variable
https://osf.io/rh2sw/
bayes.ema.tutorial.analysis.R
811
age recored as 1 18, to correct we added 17 to all age variables
data$age <- data$age + 17
Data Variable
https://osf.io/zfqax/
Study1_manipulationeffectiveness.R
812
User language variable into a factor
data$UserLanguage <- ifelse(data$UserLanguage == "EN", "EN", "NL") data$UserLanguage <- as.factor(data$UserLanguage) contrasts(data$UserLanguage) <- c(0, 1)
Data Variable
https://osf.io/zfqax/
Study1_manipulationeffectiveness.R
813
Test assumptions MANOVA Test whether residuals are normally distributed
df$pc1.residuals = lm(pc1~condition.breach, data=df)$residuals df$pc2.residuals = lm(pc2~condition.breach, data=df)$residuals df$pc3.residuals = lm(pc3~condition.breach, data=df)$residuals df$pc4.residuals = lm(pc4~condition.breach, data=df)$residuals shapiro.test(df$pc1.residuals) shapiro.test(df$pc2.residuals) shapiro.test(df$pc3.residuals) shapiro.test(df$pc4.residuals)
Statistical Test
https://osf.io/qj86m/
7_manova_fda_breach.R
814
Plot effect of first and third principal component
eigenfunctions.df = read.table(file="../data/final/eigenfunctions_breach.dat", header=T) fig.df1 <- data.frame(HR = c(eigenfunctions.df$pc1*-0.0305, eigenfunctions.df$pc1*0.1355), Condition = rep(c(rep("Breach", 51), rep("Fulfilment", 51))), Time=rep(seq(0,1, by=1/50),2), pc="Principal component 1") fig.df2 <- data.frame(HR = c(eigenfunctions.df$pc3*0.0278, eigenfunctions.df$pc3*-0.0617), Condition = rep(c(rep("Breach", 51), rep("Fulfilment", 51))), Time=rep(seq(0,1, by=1/50),2), pc="Principal component 3") fig.df = rbind(fig.df1, fig.df2) fig <- ggplot(fig.df, aes(x=Time, y =HR, linetype=Condition))+ geom_line()+ geom_vline(xintercept=.20, linetype="dashed")+ facet_grid(~pc)+ theme_bw() fig ggsave(file="../figures/figure3.png", width=8, height=6)
Visualization
https://osf.io/qj86m/
7_manova_fda_breach.R
815
function pcor2beta gives you data from a partial correlation/network input pcor a partial correlation matrix / network output a matrix of betas, each column corresponds to a dependent variable so that you can get predicted values by a matrix multiplication in the form betas %*% data
pcor2beta <- function(pcor) { require(psych) require(corpcor) diag(pcor) <- 1 p <- ncol(pcor) betas <- matrix(0, ncol = p, nrow = p) for(i in 1:p) betas[-i,i] <- matReg(y = i, x = seq(p)[-i], C = pcor2cor(pcor))$beta betas[abs(betas) < 1e-13] <- 0 betas }
Statistical Modeling
https://osf.io/ywm3r/
predictability.R
816
function R2 gives you two different types of R2 and of predicted values input pcor a partial correlation matrix / network output a matrix of betas, each column corresponds to a dependent variable so that you can get predicted values by a matrix multiplication in the form betas %*% data this function gives you R2 and predicted values from betas + data two types of R2 and predicted values are considered: R2_orig and predicted_orig use beta weights directly implied by the graphical lasso regularization R2_refit and predicted_refit use only the sparsity pattern of the network and then refit linear regression using the network only for prediction but not for shrinkage (this one should do better in terms of prediction) refit: logical, regulates whether R2_refit and predicted_refit are computed. set it to FALSE to speed up computations
R2 <- function(betas, dt, refit = TRUE) { dt <- data.frame(scale(dt)) out <- list() p <- ncol(betas)
Statistical Modeling
https://osf.io/ywm3r/
predictability.R
817
refit the model considering the sparsity pattern inicated by the network first fit regression using the sparsity indciated in the matrix of betas
betas_refit <- matrix(0, ncol = p, nrow = p) for(i in 1:p) { if(any(betas[,i] != 0)) { fit <- lm(dt[,i] ~ as.matrix(dt[,betas[,i] != 0])) betas_refit[betas[,i] != 0, i] <- fit$coefficients[-1] } else betas_refit[,i] <- 0 } predicted <- as.matrix(dt) %*% betas_refit
Statistical Modeling
https://osf.io/ywm3r/
predictability.R
818
fit the data using the lm function
bcafit <- lm(Abs562 ~ BSA, data = bca)
Statistical Modeling
https://osf.io/9e3cu/
BCA_dilution_answers.R
819
rename the columns for display
colnames(samptab) <- c("Absorbance", "Concentration (mg/mL)")
Data Variable
https://osf.io/9e3cu/
BCA_dilution_answers.R
820
departure time (12 hours so we can calculate easy the mean)
d1[, time_ := strftime(datetime_ - 60*60*12, format="%H:%M:%S")] d1[, time_ := as.POSIXct(time_, format="%H:%M:%S")]
Data Variable
https://osf.io/amd3r/
R_script_tables_and_figures.R
821
This creates a variable "period" in the dataframe myDataISO:
myDataISO$period<-gl(2, 1202, labels = c("first", "second")) # We created 2 sets of 1202 scores, the labels option then specifies the names to attach to these 2 sets, which correspond to the levels of "period" (first measurement and follow-up).
Data Variable
https://osf.io/wcqpa/
Rcode.R
822
MIXED DESIGNS AS A GLM Setting contrasts for quarantine subperiod:
myDataISO$quar.duration<-as.factor(myDataISO$quar.duration) is.factor(myDataISO$quar.duration) basvs10days<-c(0,1,0,0) # this compares the baseline (prior to quarantine) to a quarantine sub.period of up to 10-days duration basvs50days<-c(0,0,1,0) # this compares the baseline (prior to quarantine) to a quarantine sub.period of up to 50-days duration basvs103days<-c(0,0,0,1) # this compares the baseline (prior to quarantine) to a quarantine sub.period of up to 103-days duration contrasts(myDataISO$quar.duration)<-cbind(basvs10days, basvs50days, basvs103days) myDataISO$quar.duration # To check we setted the contrasts correctly myDataISOIMP2$quar.duration<-as.factor(myDataISOIMP2$quar.duration) is.factor(myDataISOIMP2$quar.duration) basvs10days<-c(0,1,0,0) # this compares the baseline (prior to quarantine) to a quarantine sub.period of up to 10-days duration basvs50days<-c(0,0,1,0) # this compares the baseline (prior to quarantine) to a quarantine sub.period of up to 50-days duration basvs103days<-c(0,0,0,1) # this compares the baseline (prior to quarantine) to a quarantine sub.period of up to 103-days duration contrasts(myDataISOIMP2$quar.duration)<-cbind(basvs10days, basvs50days, basvs103days) myDataISOIMP2$quar.duration # To check we setted the contrasts correctly
Statistical Modeling
https://osf.io/wcqpa/
Rcode.R
823
Calculating effect sizes library(DSUR.noof) We got effect sizes of meaningful predictors by executing: rcontrast(t,df) periodsecond
rcontrast(-2.685100, 97) rcontrast(-5.280908, 1201)
Statistical Test
https://osf.io/wcqpa/
Rcode.R
824
Simulate time varying variable X
data.X = expand.grid(Obs=1:T.obs,ID=1:N.dyad) var.diag.X = c(sigma.XF,sigma.XM) Sigma.X = diag(length(var.diag.X)) Sigma.X[lower.tri(Sigma.X, diag=FALSE)] = rho.X Sigma.X = pmax(Sigma.X, t(Sigma.X), na.rm=TRUE) Sigma.X = diag(var.diag.X)%*%Sigma.X%*%diag(var.diag.X) data.X = cbind(data.X,mvrnorm(N.dyad*T.obs,c(mu.XF,mu.XM),Sigma.X)) colnames(data.X) = c('Obs','ID','X.F','X.M') X.F = data.X[,'X.F'] X.M = data.X[,'X.M'] D.dyad = rbinom(N.dyad*T.obs,1,prob.D) data.X = cbind(data.X,D.dyad)
Data Variable
https://osf.io/vtb9e/
Sim.Dyad.Model.16.R
825
left_join remaining_uncertain_matched to author_data, subset to remove non
author_data <- left_join(author_data, remaining_uncertain_matched, by = c("index" = "index")) author_data$match <- as.integer(author_data$match)
Data Variable
https://osf.io/uhma8/
apsa_race_ethnicity.R
826
remerge (left_join) author_names with author_data
author_data <- left_join(test, author_data, by = c("Contact.apsa", "NameSort.apsa")) %>% subset(duplicated(Contact.apsa) == FALSE)
Data Variable
https://osf.io/uhma8/
apsa_race_ethnicity.R
827
Number of subjects in each group
n.group = c(rep(0,N.0),rep(1,N.1)) n.group = c(rep(0,N.0),rep(1,N.1)) n.group = c(rep(0,N.0),rep(1,N.1)) n.group = c(rep(0,N.0),rep(1,N.1))
Data Variable
https://osf.io/vguey/
Sim.Data.IL.R
828
Create variables days, beeps per day and Z
data.IL = expand.grid(Time=1:T,Z=n.group) data.IL = expand.grid(Time=1:T,W=W.i) data.IL = expand.grid(Time=1:T,subjno=1:N) data.IL = expand.grid(Time=1:T,subjno=1:N) data.IL = expand.grid(Time=1:T,Z=n.group) data.IL = expand.grid(Time=1:T,Z=n.group) data.IL = expand.grid(Time=1:T,W=W.i) data.IL = expand.grid(Time=1:T,W=W.i) data.IL = expand.grid(Time=1:T,subjno=1:N) data.IL = expand.grid(Time=1:T,Z=n.group) data.IL = expand.grid(Time=1:T,W=W.i)
Data Variable
https://osf.io/vguey/
Sim.Data.IL.R
829
Create variable subjno
subjno = expand.grid(1:T,1:N)[,2] data.IL = cbind(subjno,data.IL) Z = data.IL$Z subjno = expand.grid(1:T,1:N)[,2] data.IL = cbind(subjno,data.IL) W = data.IL$W subjno = expand.grid(1:T,1:N)[,2] data.IL = cbind(subjno,data.IL) Z = data.IL$Z subjno = expand.grid(1:T,1:N)[,2] data.IL = cbind(subjno,data.IL) Z = data.IL$Z subjno = expand.grid(1:T,1:N)[,2] data.IL = cbind(subjno,data.IL) W = data.IL$W subjno = expand.grid(1:T,1:N)[,2] data.IL = cbind(subjno,data.IL) W = data.IL$W subjno = expand.grid(1:T,1:N)[,2] data.IL = cbind(subjno,data.IL) Z = data.IL$Z subjno = expand.grid(1:T,1:N)[,2] data.IL = cbind(subjno,data.IL) W = data.IL$W
Data Variable
https://osf.io/vguey/
Sim.Data.IL.R
830
Create lag Y variable within days for each individual
Ylag = lag.Y(data) data = data.frame(cbind(data,Ylag)) } Ylag = lag.Y(data) data = data.frame(cbind(data,Ylag)) } Ylag = lag.Y(data) data = data.frame(cbind(data,Ylag)) }
Data Variable
https://osf.io/vguey/
Sim.Data.IL.R
831
Parameters of random intercept and random slope are generated from a Beta distribution Parameters of Group0 Stationarity condition: sigma.v1 < sqrt(1b10^2)
if (sigma.v1 > sqrt(1-b10^2)) {stop('To ensure that the model in Group 0 is stationary check that standard deviation of the random slope is smaller than sqrt(1-b10^2) where b10 is the fixed autorregressive effect')} mu.beta.0 = (b10+1)/2 sigma.beta.0 = sigma.v1/2 alpha.beta.0 = mu.beta.0^2*(((1-mu.beta.0)/sigma.beta.0^2) - (1/mu.beta.0)) beta.beta.0 = alpha.beta.0*((1/mu.beta.0) - 1) gamma.01 = rbeta(N.0, alpha.beta.0, beta.beta.0)*2-1 gamma.00 = sigma.v0*(rho.v*scale(gamma.01)+sqrt(1-rho.v^2)*rnorm(N.0)) + rep(b00,N.0)
Statistical Modeling
https://osf.io/vguey/
Sim.Data.IL.R
832
Parameters of random intercept and random slope are generated from a Beta distribution
mu.beta.1 = (b10+b11.W*W.i[i]+1)/2 sigma.beta.1 = sigma.v1/2 alpha.beta.1 = mu.beta.1^2*(((1-mu.beta.1)/sigma.beta.1^2) - (1/mu.beta.1)) beta.beta.1 = alpha.beta.1*((1/mu.beta.1) - 1) gamma.1 = rbeta(1, alpha.beta.1, beta.beta.1)*2-1 gamma.0 = sigma.v0*((rho.v*(gamma.1-(b10+b11.W*W.i[i]))/sigma.v1) + sqrt(1-rho.v^2)*rnorm(1)) + b00+b01.W*W.i[i] if (Ylag.center == TRUE){ AR.epsilon = list(order=c(1,0,0), ar=gamma.1, include.mean = FALSE) Y[which(data.IL$subjno==i)] = arima.sim(n=T,AR.epsilon)*sqrt(1-gamma.1^2)*sigma + gamma.0 } if (Ylag.center == FALSE){ AR.epsilon = list(order=c(1,0,0), ar=gamma.1, include.mean = FALSE) Y[which(data.IL$subjno==i)] = arima.sim(n=T,AR.epsilon)*sqrt(1-gamma.1^2)*sigma + gamma.0/(1-gamma.1) }}
Statistical Modeling
https://osf.io/vguey/
Sim.Data.IL.R
833
Get statistics for observed networks
obs_df <- GetNetStats(group_fit$networks, group_fit$formula, "model") colnames(obs_df) <- stat_labels obs_df <- obs_df %>% mutate(n=1:200, Group=rep(c("Young","Old"), each=100)) %>% melt(measure.vars=stat_labels, variable.name="Stat") obs_df <- rbind(obs_df, data.frame(n=1:200, Group=rep(c("Young","Old"), each=100), Stat = "Local efficiency", value = local_eff), data.frame(n=1:200, Group=rep(c("Young","Old"), each=100), Stat = "Global efficiency", value = global_eff)) sim_df <- obs_df[0, ] young_nets <- group_fit$networks[1:100] for (i in 1:n_sample){ y <- young_nets[[sample(length(young_nets),1)]] myformula <- statnet.common::nonsimp_update.formula(group_fit$formula, y ~., from.new = "y")
Statistical Modeling
https://osf.io/5nh94/
F8_plot_efficiency_goodness_of_fit.R
834
Source functions that allow to easily draw nice visualizations
source("visual_functions_all.R") source("visualize_niceplot.R")
Visualization
https://osf.io/pvyhe/
exemplar_runs_r_add_xi.R
835
Test H1d. "Compliance with behavioural guidelines" by Countries random intercept (country) + the fixed effect of country for all coefficients, priors ~ Cauchy (0, 1)
prior.coef <- brms::prior(cauchy(0,1),class='b')
Statistical Modeling
https://osf.io/z39us/
Bayesian_analyses_H1d.R
836
Calculate total number of language selected by each subj. We will use this to compute a mean weight
sum.home.languages <- adj.home %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, language) %>% dplyr::summarise(n=any(val==1)) %>% dplyr::summarise(n_languages=sum(n)) sum.fam.languages <- adj.fam %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, language) %>% dplyr::summarise(n = any(val == 1)) %>% dplyr::summarise(n_languages=sum(n)) sum.social.languages <- adj.social %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, language) %>% dplyr::summarise(n = any(val == 1)) %>% dplyr::summarise(n_languages=sum(n)) sum.work.languages <- adj.work %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, language) %>% dplyr::summarise(n = any(val == 1)) %>% dplyr::summarise(n_languages=sum(n))
Data Variable
https://osf.io/6z79s/
bi.conv.networks.R
837
Sum up the adjacency values for each subject for each topictopic pairing, merge with the number of contexts containing responses, and compute mean
sum.adj.home <- adj.home %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, topic,topic2) %>% dplyr::summarise(sum=sum(val)) %>% dplyr::left_join(sum.home.languages) %>% dplyr::mutate(avg=sum/n_languages) %>% ungroup() sum.adj.fam <- adj.fam %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, topic,topic2) %>% dplyr::summarise(sum=sum(val)) %>% dplyr::left_join(sum.fam.languages) %>% dplyr::mutate(avg=sum/n_languages) %>% ungroup() sum.adj.school <- adj.school %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, topic,topic2) %>% dplyr::summarise(sum=sum(val)) %>% dplyr::left_join(sum.school.languages) %>% dplyr::mutate(avg=sum/n_languages) %>% ungroup() sum.adj.social <- adj.social %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, topic,topic2) %>% dplyr::summarise(sum=sum(val)) %>% dplyr::left_join(sum.social.languages) %>% dplyr::mutate(avg=sum/n_languages) %>% ungroup() sum.adj.work <- adj.work %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, topic,topic2) %>% dplyr::summarise(sum=sum(val)) %>% dplyr::left_join(sum.work.languages) %>% dplyr::mutate(avg=sum/n_languages) %>% ungroup() sum.adj.dom <- adj.dom %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, topic,topic2) %>% dplyr::summarise(sum=sum(val)) %>% dplyr::left_join(sum.dom.context) %>% dplyr::mutate(avg=sum/n_context) %>% ungroup() sum.adj.non <- adj.non %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, topic,topic2) %>% dplyr::summarise(sum=sum(val)) %>% dplyr::left_join(sum.non.context) %>% dplyr::mutate(avg=sum/n_context) %>% ungroup()
Data Variable
https://osf.io/6z79s/
bi.conv.networks.R
838
Calculate total number of languages selected by each subj. We will use this to compute a mean weight
sum.school.languages <- adj.school %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, language) %>% dplyr::summarise(n = any(val == 1)) %>% dplyr::summarise(n_languages=sum(n))
Data Variable
https://osf.io/6z79s/
bi.conv.networks.R
839
NETWORK SIZE (i.e., how many topics are used in each network?)
c.size.long <- contexts.mean %>% select(subject, contains("networkSize")) %>% gather(context, network.size, contains("networkSize")) c.size.long$context = factor(c.size.long$context, levels = c("work.networkSize", "school.networkSize", "home.networkSize", "fam.networkSize", "social.networkSize"), labels = c("Work", "School", "Home", "Family", "Social")) c.size.long = c.size.long %>% filter(!is.na(network.size)) c.size.summary = convenience::sem(c.size.long, dv = network.size, id = subject, context)
Data Variable
https://osf.io/6z79s/
bi.conv.networks.R
840
Calculate total number of contexts selected by each subj. We will use this to compute a mean weight
sum.dom.context <- adj.dom %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, context) %>% dplyr::summarise(n = any(val == 1)) %>% dplyr::summarise(n_context=sum(n)) sum.non.context <- adj.non %>% gather(topic2, val, chitchat:gossip) %>% dplyr::group_by(subject, context) %>% dplyr::summarise(n = any(val == 1)) %>% dplyr::summarise(n_context=sum(n))
Data Variable
https://osf.io/6z79s/
bi.conv.networks.R
841
Language network stats NETWORK WEIGHT (i.e., how many contexts is each topictopic pair used in this language?)
language.wide <- sum.adj.dom %>% dplyr::full_join(sum.adj.non, by = c("subject", "topic", "topic2")) %>% select(-contains("n_context")) %>% select(-contains("avg")) names(language.wide) <- c("subject","topic", "topic2", "Dominant Language", "Non-dominant Language") language.long <- gather(language.wide, language, weight, "Dominant Language":"Non-dominant Language") language.long = language.long %>% filter(!is.na(weight)) l.weight.summary = convenience::sem(language.long, dv = weight, id = subject, language) language.aov <- aov(weight ~ language, data = language.long) summary.aov(language.aov) # sig***
Data Variable
https://osf.io/6z79s/
bi.conv.networks.R
842
Mutate targets to uppercase
SPD_all <- SPD_all %>% mutate(target = toupper(target)) dat <- dat %>% mutate(target = toupper(target))
Data Variable
https://osf.io/wgneh/
3 Prepare Data.R
843
Compute Zscores separately for each participant and each session
group_by(Subject, Session) %>% mutate(Ztarget.RT = scale(target.RT)) %>% ungroup() %>%
Statistical Test
https://osf.io/wgneh/
3 Prepare Data.R
844
look up pchange in table based on reward (yes/no) and confidence unselected advisor
sel.row <- subset(p_switch, Reward == reward & Conf.unsel.adv == unselect.adv.conf) sel.row pswitch <- sel.row$Changed pswitch
Data Variable
https://osf.io/9gjyc/
Simulations Evidence level.R
845
exploratory bifactor analysis
fa(resp, fm="ml", cor="tet", nfactors = 5, rotate = "bifactor", correct = 0)
Statistical Modeling
https://osf.io/dkrhy/
BICBRaschModelsandPlots.R
846
estimating Rasch Tree models for gender & age
gender.dif<-raschtree(dat~gender, data=bdat, deriv="numeric", alpha=.01, bonferroni=TRUE) age.dif<-raschtree(dat~age, data=bdat, deriv="numeric", minsize=400, alpha=.01, bonferroni=TRUE) summary(gender.dif) summary(age.dif) plot(gender.dif) plot(age.dif)
Statistical Modeling
https://osf.io/dkrhy/
BICBRaschModelsandPlots.R
847
set those study grades to NA which are outside the range of the grading system
mSI$crt.gru_s_w2[mSI$crt.gru_s_w2 == 0] <- NA mSI$crt.gru_s_w2[mSI$crt.gru_s_w2 > 6] <- NA
Data Variable
https://osf.io/m6pb2/
Data_preparation_Sample_E.r
848
compute and save descriptives statistics of variables before aggregation and standardization
descriptives <- round(select(psych::describe(mSI_descr), n, min, max, mean, sd),2) write.table(descriptives, file="Descriptives/descriptives_Sample_E_mSI.dat", sep="\t")
Data Variable
https://osf.io/m6pb2/
Data_preparation_Sample_E.r
849
mean ratings of targets and decoys by condition
tapply(dat.long$rating, list(dat.long$condition, dat.long$target), mean) tapply(dat.long$rating, list(dat.long$condition, dat.long$target), function(x) sd(x)/sqrt(length(x)))
Data Variable
https://osf.io/eg6w5/
experiment1d_analyses.R
850
paired contrasts on estimated marginal means to unpack interaction
emm_options(lmer.df = "satterthwaite") fitlmer2.em <- emmeans::emmeans(fitlmer2, specs = ~ target*condition | target) fitlmer2.em # estimated marginal means contrast(fitlmer2.em, method = "trt.vs.ctrl", adjust = "none") # paired contrasts with no correction confint(contrast(fitlmer2.em, method = "trt.vs.ctrl", adjust = "none")) # 95% confidence intervals contrast(fitlmer2.em, method = "trt.vs.ctrl", adjust = "holm") # paired contrasts with holm correction s <- as.data.frame(summary(fitlmer2.em))
Statistical Test
https://osf.io/eg6w5/
experiment1d_analyses.R
851
Statistical tests: ECT Choice score vs Training criteria Did mice reduce their choice score in the test compared to 80% criteria? using JBTxECT_id.csv dataset
wilcox.test(md_id$choice_score[md_id$rat_bedding != "mixed"], mu = 0.6) # 80% big = NCT score 0.6
Statistical Test
https://osf.io/z6nm8/
Stats_figures_ECT.R
852
Make figures and tables check for correlaitons between individuals
chart.Correlation(ind_res[[14]][,1:6] , histogram=TRUE, pch=19)
Visualization
https://osf.io/rmcuy/
Model_analysis.R
853
define plot styling pp_color for predictive draw lines, set in plotting_style.R
cat("\n\nPlotting posterior predictive checks...\n") cat("Ignore coordinate system and colour warnings;;", "these are expected behavior\n") chains <- rstan::extract(fit) n_checks = length(chains$titer_rep_censored[, 1]) sample_checks = sample(1:n_checks, n_to_plot) print(sample_checks) print(names(chains)) cat(sprintf("\nPlotting pp checks...\n\n")) real_titers <- dat$log10_titer rep_titers <- chains$titer_rep_censored[sample_checks, ] plot_upper <- pp_check(10^(real_titers), yrep = 10^(rep_titers), ## convert to RML titer fun = ppc_dens_overlay, alpha = 0.2) + ggtitle("Predictive checks") + scale_color_manual(name="", labels = c("real data", "posterior predictive draws"), values = c("black", pp_color)) + scale_x_continuous( trans = 'log10', labels = trans_format('log10', math_format(10^.x))) + coord_cartesian(xlim = c(10^0.5, 10^6.5)) + expand_limits(x = 0.5, y = 0) + theme_project(base_size = 30)
Visualization
https://osf.io/fb5tw/
figure_pp_check.R
854
extract relevant data & calculate Brier score for each participant
lay.data <- NULL for (i in 1:nsubjects) { study.order <- as.numeric(unlist(strsplit(prediction.data$preorder[i], split="|", fixed = TRUE)))[2:28] label <- ifelse(prediction.data$Conditie[i]==1,"des.","bf.") subject.data <- NULL for (j in 1:nstudies){ understanding <- eval(parse(text = paste0("prediction.data$`",study.order[j],"_",label,"0`" )))[i] # 1 = did not understand, otherwise: NA replication.belief <- eval(parse(text = paste0("prediction.data$`",study.order[j],"_",label,"belief`" )))[i] - 1 # now 0 = will not be replicated, 1 = will be replicated confidence.rating <- eval(parse(text = paste0("prediction.data$`",study.order[j],"_",label,"conf_1`")))[i] # on a scale from 0 - 100 confidence.rating <- ifelse(replication.belief == 0, confidence.rating*-1, confidence.rating) # make confidence in replication failure negative confidence.rating <- confidence.rating / 200 + .5 # convert to 0-1 scale study <- j condition <- ifelse(label == "des.","DescriptionOnly","DescriptionPlusStatistics") replication.outcome <- replication.outcomes[j] replication.effectsize <- replication.effectsizes[j] ind.subject.data <- cbind(study,condition,understanding,replication.belief,confidence.rating, replication.outcome,replication.effectsize) subject.data <- rbind(subject.data,ind.subject.data) } subject <- i ind.lay.data <- cbind(subject,subject.data) lay.data <- rbind(lay.data,ind.lay.data) } rm(study.order,label,condition,subject.data,understanding,replication.belief,confidence.rating, i,j,study,replication.outcome,replication.effectsize,ind.subject.data,subject,ind.lay.data)
Data Variable
https://osf.io/x72cy/
PreprocessingQualtricsData.R
855
3. Data exclusion based on set criteria criteria: 1. if participants failed the attention check (i.e., did not press 'NO' and 75% (range 7080 is allowed)) 2. if a study description is not understood, exlcude this study for this participant 3. if a study is not understood by > 50% of the participants, exclude this study 4. if a participant does not understand > 50% of the studies, exclude this participant
bogus.study <- 27 clean.data <- as.data.frame(lay.data, stringsAsFactors = FALSE) correct.range <- clean.data[clean.data$study==bogus.study,]$confidence.rating correct.range <- rep(correct.range >= .1 & correct.range <= .15, each = nstudies) # correct range NO and 70-80% --> .1-.15 on the confidence scale clean.data.1 <- clean.data[correct.range,] # apply 1. clean.data.2 <- clean.data.1[is.na(clean.data.1$understanding),] # apply 2. remove.studies <- which(table(clean.data.2$study)<nsubjects/2) # indicate which studies are understood by less than half of the people clean.data.3 <- clean.data.2[! clean.data.2$study %in% remove.studies,] # apply 3. remove.subjects <- which(table(clean.data.3$subject)<nstudies/2) # indicate which subjects understood less than half of the studies clean.data.4 <- clean.data.3[! clean.data.3$subject %in% remove.subjects,] # apply 4. full.data <- clean.data.4 full.data$understanding <- NULL # delete empty column
Data Variable
https://osf.io/x72cy/
PreprocessingQualtricsData.R
856
total_distance of roads surveyed
sum(unique(site_data_cleaned$Site_Length_m))
Data Variable
https://osf.io/82dqk/
PublicationCode2.R
857
Bring in census data for each site.
census_data <- fread("StudyAreas/Demographic_Site_Data/PDB_2015_Tract.csv")
Data Variable
https://osf.io/82dqk/
PublicationCode2.R
858
Plot Quantiles against one another.
p2 <- ggplot() + geom_point(aes(y = receipt_distance_quantiles, x = montecarlo_distance_quantiles)) + geom_smooth(aes(y = receipt_distance_quantiles, x = montecarlo_distance_quantiles), method = "lm", se = F) + scale_x_log10(breaks= 10^c(1:5)) + scale_y_log10() + theme_classic(base_size = 20) + labs(x = "Human Trip Quantile Distance (m)", y = "Receipt Quantile Distance (m)") + coord_equal() + geom_abline(intercept = 0, slope = 1)
Visualization
https://osf.io/82dqk/
PublicationCode2.R
859
join the trash bearing data and wind data into single frame for plotting.
CompleteDataCoordPlot <- CompleteDataWithGoogle %>% filter(!is.na(windxcoordmeanbearing) & !is.na(trashxcoordbearing)) %>% #Removes data where we don't have wind or dont have receipt direction from the analysis. dplyr::select(windxcoordmeanbearing, windycoordmeanbearing, row) %>% rename(x = windxcoordmeanbearing, y = windycoordmeanbearing) %>% bind_rows(CompleteDataWithGoogle %>% filter(!is.na(windxcoordmeanbearing) & !is.na(trashxcoordbearing)) %>% dplyr::select(trashycoordbearing, trashxcoordbearing, row) %>% rename(x = trashycoordbearing, y = trashxcoordbearing))
Data Variable
https://osf.io/82dqk/
PublicationCode2.R
860
Check if Trial column exists, if not create it
if (!"Trial" %in% colnames(df)) { df <- cbind(Trial = NA, df) } trial_counter <- 1 for (i in seq_along(index_pairs$start)) { start_pos <- index_pairs$start[i] end_pos <- index_pairs$end[i]
Data Variable
https://osf.io/yfegm/
allocateTrials.r
861
group level Pi/Pb for each set size on probability scale
PiIdx <- NULL for (j in 1:nsubj) PiIdx <- c(PiIdx, which(names(as.data.frame(mcmcChain)) == paste0("Pi[", j, ",", s, "]"))) PbIdx <- NULL for (j in 1:nsubj) PbIdx <- c(PbIdx, which(names(as.data.frame(mcmcChain)) == paste0("Pb[", j, ",", s, "]"))) meanPi[s,experiment,] <- rowMeans(mcmcChain[, PiIdx]) # means across subjects of posterior means of Pi for each set size meanPb[s,experiment,] <- rowMeans(mcmcChain[, PbIdx]) } DeltaPi[,experiment] <- mcmcChain[, paste0("dPi")] # posterior samples of slope of Pi over set size DeltaPb[,experiment] <- mcmcChain[, paste0("dPb")] print(colMeans(DeltaPi>0)) # proportion of posterior samples > 0 save(MuPi, MuPb, meanPi, meanPb, DeltaPi, DeltaPb, file=parChainFile) }
Statistical Modeling
https://osf.io/qy5sd/
PairsBindingRSS_MPT.R
862
determine manifestations and visualize cultural value dimensions
d$SVS_d1 <- d$SVS_harmony - d$SVS_mastery d$SVS_d2 <- d$SVS_egalit - d$SVS_hierarchy d$SVS_d3 <- (d$SVS_autona+d$SVS_autoni)/2 - d$SVS_embed cor(d[grepl("_d",names(d))]) f$SVS_d1 <- f$SVS_harmony - f$SVS_mastery f$SVS_d2 <- f$SVS_egalit - f$SVS_hierarchy f$SVS_d3 <- (f$SVS_autona+f$SVS_autoni)/2 - f$SVS_embed cor(f[grepl("_d",names(f))]) pcf <- princomp(f[,3:9], cor=T) summary(pcf) loadings(pcf)
Visualization
https://osf.io/qxf5t/
TSST_Meta.R
863
CTRees analyze the trees for each agreement indicator individually: Variationcorrelation of reported likelihood ~ proportion unstable:
png("output/figures/paper/ctree_rhopsi.png", width = 600, height = 350) VS_ <- VS VS_ <- VS_[!is.na(VS_$rho_llhd) & !is.na(VS_$lagZ_20), ] VS_ <- VS_[!VS_$gtype_class %in% c("IFrc", "IFsc", "MFcr", "FCxr") & VS_$band == "TL", ] VS_$gtype_class[VS_$gtype_class %in% "SH" & VS_$gtype_rank == "secondary"] <- "SH/FC" CT <- partykit::ctree(rho_llhd ~ nPDays , data = VS_, alpha = 0.05, maxdepth = 2) Vars <- setVars4ctreeColoring(VS_) plotCTree(CT) dev.off()
Statistical Modeling
https://osf.io/w7pjy/
analyze_agreementIndicators.R
864
Selecting and recoding items that were measured in all waves
d <- df %>% select(id, wave, lsat = sat6, fsat = sat1i3, per1i2, per1i7, per1i13) %>% mutate(per1i2 = invert(per1i2, 5))
Data Variable
https://osf.io/fdp39/
functions.r
865
6. Extract & plot estimates Is evolution more comparable to B0 or B1?
describe_posterior((r.delta.z[,1,])) # B0_Conc describe_posterior((r.delta.z[,2,])) # B0_Disc describe_posterior((r.delta.z[,3,])) # B1_Conc describe_posterior((r.delta.z[,4,])) # B1_Disc
Visualization
https://osf.io/pnug5/
2.Ginteger_CrossSex_skewers.R
866
for each subject, aggregate his/her selfratings across all interactions (in second and third week of eventbased assessment)
app_SR_aggr <- aggregate(app_SR, by=list(app_SR$id_a), mean)
Data Variable
https://osf.io/m6pb2/
Data_preparation_Sample_C.R
867
recode abitur grades which were not provided but stored as 0, and grades that were provided in units of the wrong grading system
surv2345$abitur_grade[surv2345$abitur_grade == 0] <- NA surv2345$abitur_grade[surv2345$abitur_grade == 12] <- 2.0 surv2345$abitur_grade[surv2345$abitur_grade == 13] <- 1.7
Data Variable
https://osf.io/m6pb2/
Data_preparation_Sample_C.R
868
define a function which, for each person, selects the first nonNA measurement he provided out of three time points ( out of three variables)
firstnonNA_3timepoints <- function(df) {if(all(is.na(df))){ NA } else if (!is.na(df[1])){ df[1] } else if (!is.na(df[2])){ df[2] } else if (!is.na(df[3])){ df[3] } }
Data Variable
https://osf.io/m6pb2/
Data_preparation_Sample_C.R
869
for the exam grades 15 to 18 which have been assessed only at the last occasions (Survey 5), save the grade in new variable for consistency in notation
surv2345$retro_grades_15 <- surv2345$retro_grades_15_t5 surv2345$retro_grades_16 <- surv2345$retro_grades_16_t5 surv2345$retro_grades_17 <- surv2345$retro_grades_17_t5 surv2345$retro_grades_18 <- surv2345$retro_grades_18_t5
Data Variable
https://osf.io/m6pb2/
Data_preparation_Sample_C.R
870
select variables (all 18 exam grades) to be aggregated for mean exam grade
retro_grades_df <- as.matrix(surv2345[,paste0("retro_grades_",1:18)])
Data Variable
https://osf.io/m6pb2/
Data_preparation_Sample_C.R
871
Select variables for the analyses and save data frame that will be uploaded in the OSF
connect_osf <- select(connect, Z_Raven_self:Z_MWTB_obj, Z_global_selfeval:Z_achievement) write.table(connect_osf, file="Data_Sample_C_connect.txt",sep = "\t",col.names=TRUE)
Data Variable
https://osf.io/m6pb2/
Data_preparation_Sample_C.R
872
DESCRIPTIVE STATISTICS compute and save sample statistics (age distribution, number of females)
age <- round(select(psych::describe(connect_descr$age), n, min, max, mean, sd),2) age$n <- nrow(connect_descr) sampstats <- mutate(age, female=plyr::count(connect_descr$sex)[plyr::count(connect_descr$sex)[,1]=="1",]["freq"] ) write.table(sampstats, file="Descriptives/age_sex_Sample_C_connect.dat", sep="\t", row.names=FALSE)
Data Variable
https://osf.io/m6pb2/
Data_preparation_Sample_C.R
873
compute and save correlation table of variables before aggregation and standardization
cor_raw <- corcons(connect_descr) write.table(cor_raw, file="Descriptives/correlations_raw_Sample_C_connect.dat", sep="\t")
Data Variable
https://osf.io/m6pb2/
Data_preparation_Sample_C.R
874
Hypothesis 1.1 Hypothesis 1 was tested via pairedsample t.tests (alphas need to be Bonferronicorrected) Examples for conscientious goal classes (first two rows of Table 1 Conscientious Goals). Remaining tests are simialr
t.test(x = dt1$CP_Class_01, y = dt1$CN_Class_01, paired = TRUE, alternative = "greater") t.test(x = dt1$CP_Class_02, y = dt1$CN_Class_02, paired = TRUE, alternative = "greater")
Statistical Test
https://osf.io/ywm3r/
Analyses.R
875
Hypothesis 1.2 Hypothesis 1.2 was tested via partiallyoverlapping samples ttests. We report the analyses for the first panel of Table S2 (and for pvalues reported in Table 2). The remaining analyses are identical, but were performed on other goal classes
Partover.test(dt1$CP_Class_01, dt1$HP_Class_01, stacked = TRUE, alternative = "greater") Partover.test(dt1$CP_Class_01, dt1$EP_Class_01, stacked = TRUE, alternative = "greater") Partover.test(dt1$CP_Class_01, dt1$XP_Class_01, stacked = TRUE, alternative = "greater") Partover.test(dt1$CP_Class_01, dt1$AP_Class_01, stacked = TRUE, alternative = "greater") Partover.test(dt1$CP_Class_01, dt1$OP_Class_01, stacked = TRUE, alternative = "greater") Partover.test(dt1$CP_Class_01, dt1$HN_Class_01, stacked = TRUE, alternative = "greater") Partover.test(dt1$CP_Class_01, dt1$EN_Class_01, stacked = TRUE, alternative = "greater") Partover.test(dt1$CP_Class_01, dt1$XN_Class_01, stacked = TRUE, alternative = "greater") Partover.test(dt1$CP_Class_01, dt1$AN_Class_01, stacked = TRUE, alternative = "greater") Partover.test(dt1$CP_Class_01, dt1$ON_Class_01, stacked = TRUE, alternative = "greater")
Statistical Test
https://osf.io/ywm3r/
Analyses.R
876
Examples of Tobit regressions of the subjective importance of specific goals on HEXACO traits (first two lines of Table 3). Pvalues need to be corrected using the Bonferroni method, considering that we performed 21 multiple regressions (multiply them by 21 and round values larger than 1 to 1)
predictors <- select(dt2, HEXACO_H:HEXACO_O) %>% scale() fit1 <- censReg(dt2$G_C_01_DimostrareQlcQln_Importance ~ predictors, left = 1, right = 9) summary(fit1) fit2 <- censReg(dt2$G_C_02_EssereDegnoFiducia_Importance ~ predictors, left = 1, right = 9) summary(fit2)
Statistical Modeling
https://osf.io/ywm3r/
Analyses.R
877
Hierarchical regression predicting the willingness to change conscientiousness according to CBFI (Table 4). For ease of formatting, I used the R package AutoModel
Data4HierarchicalReg <- select(dt2, CBFI_C, POS, HEXACO_H:HEXACO_O, BFI2_O:BFI2_N, Importance_GC, Importance_GU) %>% scale() %>% data.frame() Data4HierarchicalReg$BFTGI_C_bin <- as.numeric(dt2$BFTGI_C == 3)
Statistical Modeling
https://osf.io/ywm3r/
Analyses.R
878
Hypothesis 3.2 multiple regressions predicting each goal class from HEXACO traits (we report examples reproducing the first two rows of Table 8, the code for the others is similar, save for the goal class). Pvalues need to be corrected using the Bonferroni method, considering 9 multiple regressions (multiply them by 9 and transform values > 1 to 1)
lm(G08Rules ~ ., data = select(dt3, G08Rules, HEXACO_H:HEXACO_O)) %>% lm.beta %>% summary lm(G10Control ~ ., data = select(dt3, G10Control, HEXACO_H:HEXACO_O)) %>% lm.beta %>% summary
Statistical Modeling
https://osf.io/ywm3r/
Analyses.R
879
DIFFERENTIAL ITEM FUNCTIONING Create trichotomous income variable
data = data %>% mutate( income3 = recode(income, '1=1;; 2=1;; 3=1;; 4=1;; 5=1;; 6=1;; 7=1;; 8=1;; 9=2;; 10=2;; 11=2;; 12=2;; 13=2;; 14=3;; 15=3;; 16=3;; 17=3;; 18=3')) q1merit = data[c("Q1A", "Q1B", "Q1H", "Q1N")] q1opportunity = data[c("Q1C", "Q1D", "Q1F", "Q1G")] q1chance = data[c("Q1I", "Q1O", "Q1P", "Q1Q")] q2merit = data[c("Q2A", "Q2B", "Q2H", "Q2N")] q2opportunity = data[c("Q2C", "Q2D", "Q2F", "Q2G")] q2chance = data[c("Q2I", "Q2O", "Q2Q", "Q2R")] q3merit = data[c("Q3A", "Q3B", "Q3H", "Q3N")] q3opportunity = data[c("Q3C", "Q3D", "Q3F", "Q3G")] q3chance = data[c("Q3I", "Q3O", "Q3P", "Q3Q")] q4merit = data[c("Q4B", "Q4C", "Q4I", "Q4N")] q4opportunity = data[c("Q4D", "Q4E", "Q4G", "Q4H")] q4chance = data[c("Q4J", "Q4O", "Q4P", "Q4Q")] sesmerit = data[c("hs_merit", "ls_merit", "ha_merit", "la_merit")] sesopportunity = data[c("hs_opportunity", "ls_opportunity", "ha_opportunity", "la_opportunity")] seschance = data[c("hs_chance", "ls_chance", "ha_chance", "la_chance")] merit_full = data[c("hs_efft", "hs_abil", "ls_efft", "ls_abil", "ha_efft", "la_efft")] gender = data$gender age = data$AGE4 politic = data$D3 income = data$income3 educ = data$EDUC4
Data Variable
https://osf.io/25a6x/
BeliefsScale_IRT_Rscript.R
880
Display distribution of efficacy judgments (can be used to set a prior on the next experiment)
eff_all <- c(eff_nograph, eff_graph) par(mfrow=c(2,3)) myhist("Efficacy", eff_all, 1, 9, N/2) myhist("Efficacy - no graph", eff_nograph, 1, 9, N/4) myhist("Efficacy - graph", eff_graph, 1, 9, N/4) cat("Grand mean for efficacy: ", format_number(mean(eff_all)), "\n")
Visualization
https://osf.io/zh3f4/
exp1 simulated analysis.R
881
Models by social network measure 1. Indegree
m1 <- glmer(pup_year_surv~indegree + valley + overall.index + pup_sex + pup_littersizeborn + mother_age + network_size + pup_emerjdate + overall.index*indegree + valley*indegree + (1|mother_uid) + (1|pup_yrborn), control = glmerControl("bobyqa", optCtrl=list(maxfun=2e5)), data=sur_data, family= binomial) summary(m1)
Data Variable
https://osf.io/wc3nq/
7) agr_yearly_model.R
882
remove upper triangle of correlation matrix
if(removeTriangle[1]=="upper"){ Rnew <- as.matrix(Rnew) Rnew[upper.tri(Rnew, diag = TRUE)] <- "" Rnew <- as.data.frame(Rnew) }
Data Variable
https://osf.io/3b59h/
Analysis.R
883
put SDs in parantheses
mutate(gender_sd = paste0("(", gender_sd, ")"), age_sd = paste0("(", age_sd, ")"), parent_sd = paste0("(", parent_sd, ")"), pol_sd = paste0("(", pol_sd, ")")) %>% mutate(gender_sd = paste0("(", gender_sd, ")"), age_sd = paste0("(", age_sd, ")"), parent_sd = paste0("(", parent_sd, ")"), pol_sd = paste0("(", pol_sd, ")")) %>% mutate(intent_apply_job_sd = paste0("(", intent_apply_job_sd, ")"), intent_apply_ps_sd = paste0("(", intent_apply_ps_sd, ")"), psm_sd = paste0("(", psm_sd, ")"), pofit_sd = paste0("(", pofit_sd, ")"), pjfit_sd = paste0("(", pjfit_sd, ")")) %>% mutate(intent_apply_job_sd = paste0("(", intent_apply_job_sd, ")"), intent_apply_ps_sd = paste0("(", intent_apply_ps_sd, ")"), psm_sd = paste0("(", psm_sd, ")"), pofit_sd = paste0("(", pofit_sd, ")"), pjfit_sd = paste0("(", pjfit_sd, ")")) %>%
Data Variable
https://osf.io/3b59h/
Analysis.R
884
5.3 Pirateplot for dependent variables
df_pirate_dv <- tibble(dv = c(df$intent_apply_job, df$intent_apply_ps), group = c(rep.int(0, length(df$intent_apply_job)), rep.int(1, length(df$intent_apply_ps)))) %>% mutate(group = factor(group, labels = c("Intention to\napply for job", "Intention to apply\nfor public service"))) pirate_dvs <- yarrr::pirateplot(dv ~ group, data = df_pirate_dv, inf.method = "ci", xlab = "Dependent variable", ylab = "", theme = 2, cex.lab = 1.2, cex.axis = 1.2, cex.names = 1.2) pirate_dvs <- recordPlot() # contains all plotting information png("./output/Appendix_pirate_dvs.png") pirate_dvs dev.off()
Visualization
https://osf.io/3b59h/
Analysis.R
885
Load the functions for the raincloud plots
source('funcs/R_rainclouds.R')
Visualization
https://osf.io/4fvwe/
load_my_functions.R
886
Save the result and load if you run the permutation test on a different computer than the visualizations
save(list.res,file="results.Rdata") load("results.Rdata")
Visualization
https://osf.io/greqt/
02_analysis.R
887
data as a scatter plot, column s for x and column v for y, size 4 points, use the sat_curve data frame as the source
geom_point(data = sat_curve, aes(x = s, y = v), size = 4) +
Visualization
https://osf.io/9e3cu/
sat_curve.R
888
fit as a line plot, use the mm_fit data frame as the data source
geom_line(data = mm_fit, aes(x = s, y = v)) +
Visualization
https://osf.io/9e3cu/
sat_curve.R
889
change the axis label text to size 22, bold, and black color
axis.text.x = element_text(size = 22, face = "bold", color = "black"), axis.text.y = element_text(size = 22, face = "bold", color = "black")) +
Visualization
https://osf.io/9e3cu/
sat_curve.R
890
sequence of age inputs within range of model: (15, 75) years old
seq.length <- length(seq(15, 75, 1))
Data Variable
https://osf.io/92e6c/
analyze_scan_model_hadza.R
891
Define link function with softmax transformation The following function is taken from Koster and McElreath (2017) Modifications made to accommodate current model structure (e.g. addition of com_id, month)
link.mn <- function( data ) { K <- dim(post$v_id)[3] + 1 ns <- dim(post$v_id)[1] if ( missing(data) ) stop( "BOOM: Need data argument" ) n <- seq.length softmax2 <- function(x) { x <- max(x) - x exp(-x)/sum(exp(-x)) } p <- list() for ( i in 1:n ) { p[[i]] <- sapply( 1:K , function(k) { if ( k < K ) { ptemp <- post$a[,k] + post$bA[,k] * data$age_z[i] + post$bQ[,k] * data$age_zq[i] + post$bT[,k] * data$time_z[i] + post$bTQ[,k] * data$time_zq[i] if ( data$id[i]>0 ) ptemp <- ptemp + post$v_id[,data$id[i],k] if ( data$com_id[i]>0 ) ptemp <- ptemp + post$v_com[,data$com_id[i],k] if ( data$month_id[i]>0 ) ptemp <- ptemp + post$v_month[,data$month_id[i],k] } else { ptemp <- rep(0,ns) } return(ptemp) })
Statistical Modeling
https://osf.io/92e6c/
analyze_scan_model_hadza.R
892
The values are converted to probabilities using the softmax function which ensures that the predicted values across categories sum to 100% probabilities.
for ( s in 1:ns ) p[[i]][s,] <- softmax2( p[[i]][s,] ) } return(p) } for ( s in 1:ns ) p[[i]][s,] <- softmax2( p[[i]][s,] ) } return(p) } low_age <- (15 - mean_age_female)/sd_age_female high_age <- (75 - mean_age_female)/sd_age_female
Statistical Modeling
https://osf.io/92e6c/
analyze_scan_model_hadza.R
893
everything will be calculated over the "adult" interval from 15 to 75
age_seq <- (seq(15, 75, 1)- mean_age_female)/sd_age_female
Data Variable
https://osf.io/92e6c/
analyze_scan_model_hadza.R
894
We create a data frame from age_seq and its second order polynomial, holding most of predictors at their sample mean. In the original Koster+McElreath paper, they specified 8:00 am for the time of day in order to effect a more sensible alignment with the empirical data. In this case, we hold that parameter at 0, which therefore corresponds with the mean time of day in our dataset for behavioral observations (0.532 ~12:45). Also, as we noted earlier in the notes about the multinomial link function, we set "id" to zero in order to average over the random effects.
pred_dat <- data.frame( id = 0 , age_z = age_seq, age_zq = age_seq^2, time_z = 0, time_zq = 0, com_id = 0, month_id = 0 ) p <- link.mn ( pred_dat )
Statistical Modeling
https://osf.io/92e6c/
analyze_scan_model_hadza.R
895
Biodiversity conversion general form is Index (Maxent ^ wM + Abundance ^ wL )^(1/(wM+wL)) but would need to take care of how this scales
pro.fun <- function(x, abuntab, zonename){ (x^wM*abuntab[,which(names(abuntab)==zonename)]^wL)^(1/(wM+wL))}
Statistical Modeling
https://osf.io/5ejcq/
data_preperation_functions.R
896
Construct variable for number of family members in country
famcountry = data4$partnerwhere + data4$mumwhere + data4$dadwhere table(famcountry) data4$famcountry <- famcountry hist(data4$famcountry) sum(is.na(data4$famcountry)) #175
Data Variable
https://osf.io/qjfv4/
refugeeservice_varwork2.R
897
Plot network latent variable on CFA latent variable
layout(t(c(1,2))) plot(cfaLV, netLV, main = "Network Latent Variable\non CFA Latent Variable", ylab = "Network Latent Variable", xlab = "CFA Latent Variable")
Visualization
https://osf.io/5hpjn/
NetworkToolbox.R
898
Plot participant means on CFA latent variable
plot(cfaLV, pmeans, main = "Participant Means on\nCFA Latent Variable", ylab = "Participant Means", xlab = "CFA Latent Variable")
Visualization
https://osf.io/5hpjn/
NetworkToolbox.R
899
initialize matrices to store validation results
WklValidation <- matrix(nrow = nrow_max, ncol = 13, dimnames = list(seq(nrow_max), c("distribution", "nProfiles_checked", "day_after_burial", "timewindow_lower", "timewindow_upper", "likelihood_reported", "likelihoodSpread_reported", "distribution_reported", "sensitivity_reported", "size_reported", "sizeSpread_reported", "grain_size_reported", "data_quality"))) WklValidation_char <- matrix(nrow = nrow_max, ncol = 10, dimnames = list(seq(nrow_max), c("vf_uuid", "pwl_uuid", "pwl", "validation_date", "band", "timing_mode", "gtype_class", "gtype_rank", "comment", "danger_rating"))) vf_uuid <- NA
Data Variable
https://osf.io/w7pjy/
PWLcapturedByModel.R
900
run linear models on predicted probabilities, to calculate the trend
models <- pred %>% group_by(x, country) %>% nest() %>% mutate(models = map(data, ~ lm(predicted ~ wave, data = .))) %>% spread_coef(models, se = TRUE)
Statistical Modeling
https://osf.io/7wd8e/
06 - Trends.R