ID
int64
1
1.07k
Comment
stringlengths
8
1.13k
Code
stringlengths
10
4.28k
Label
stringclasses
4 values
Source
stringlengths
21
21
File
stringlengths
4
82
1,001
Linear mixed effect model (RTs) with ART_English
Nword_LME_AR = lmer(-1000/RT ~ primec*AR_English + (1|item) + (1+primec|subject), data = nbyTrial, contrasts = list(primec = cc1), control=lmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5))) summary(Nword_LME_AR) plot(allEffects(Nword_LME_AR), x.var = "AR_English")
Statistical Modeling
https://osf.io/gztxa/
Vowel_Harmony_LDT_Naming.R
1,002
exclude features with zero or nearzero variance
exclude_zero.var = nearZeroVar(data[, which(!colnames(data) %in% no.features)], freqCut = 95/5, uniqueCut = 10, saveMetrics = FALSE, allowParallel = TRUE) length(exclude_zero.var) exclude_zero.var = colnames(data[, which(!colnames(data) %in% no.features)])[exclude_zero.var] data = data %>% dplyr::select(-all_of(exclude_zero.var))
Data Variable
https://osf.io/b7krz/
ML_target_independent_preprocessing.R
1,003
Add the posterior_samples values as a column in the dataframe. Repeat it as many times as there are cell in the factorial design, namely 2. factor estimates
post.data$b_GramGender2 <- rep(posterior_samples(model.study2)[['b_GramGender2']], 2)
Data Variable
https://osf.io/5xdbu/
study2-rscript.R
1,004
create dataset with only correct trials and only trials above 100 ms
data.3SD <- data[data$corr == 1, ] data.3SD <- data.3SD[data.3SD$min2000 == 1, ] data.3SD <- data.3SD[data.3SD$plus100 == 1, ]
Data Variable
https://osf.io/5yvnb/
analyse_final_Exp6_OSF.R
1,005
Function for showing parameter estimats with pvalues for polr models
showCoefWithPValue <- function(model) { coef <- coef(summary(model)) pvalue <- pnorm(abs(coef[, "t value"]), lower.tail = FALSE) * 2 coef <- cbind(coef, "pvalue" = pvalue) return(round(coef, 4)) }
Statistical Modeling
https://osf.io/aczx5/
220423_FinalModelEstimation.R
1,006
Correlation between bulletin user type and avalanche awareness training
cor.test(as.numeric(PartBkgr$BullUseType), as.numeric(PartBkgr$BackgrAvTraining), method = "spearman")
Data Variable
https://osf.io/aczx5/
220423_FinalModelEstimation.R
1,007
This additional analysis test the influence of trialbytrial blink duration on response error by computing individual Bayes factors the Bayes factor is calculated by examining the residuals of a null model and how they correlate with blinkdurations the procedure use a 'default' prior for calculating bayes factors for correlations code here:
source("BF_correlations.R") bf_null <- rep(NA, length(unique(d$Subject))) dur_slope <- rep(NA, length(unique(d$Subject))) for(i in 1:length(bf_null)){ d_i <- d[d$Subject==unique(d$Subject)[i] & d$cond1==1,] m0 <- lm(ResponseError~vel1, d_i) m1 <- lm(ResponseError~vel1 + cond1:bdur, d_i) dur_slope[i] <- coef(m1)[3] bf_null[i] <- 1/bf10JeffreysIntegrate(n=nrow(d_i), r=cor(residuals(m0), d_i$bdur)) }
Statistical Test
https://osf.io/f6qsk/
analysis_exp1.R
1,008
median and range of BF supporting the null
round(median(bf_null[bf_null > 10^(1/2)]),digits=2) round(range(bf_null[bf_null > 10^(1/2)]),digits=2)
Statistical Test
https://osf.io/f6qsk/
analysis_exp1.R
1,009
calculate number of days between symptoms
mutate( ill_where_n=ifelse(sym_temp==1, 1, 0), ill_where_n=cumsum(ill_where_n), ill_where_n=ifelse(sym_temp==1, ill_where_n, NA), prev_day_ill=lag(sym_temp, 1), day_lag=lag(day_date, 1),
Data Variable
https://osf.io/n7sep/
code.R
1,010
recode illness vars as NA if no specific symptoms during episode
mutate_at(vars(ill_where_id, ill_where_n, ill_where_start, ill_where_end, ill_where_new), funs(ifelse(any_specif_sym==FALSE, NA,. ))) %>%
Data Variable
https://osf.io/n7sep/
code.R
1,011
remove spaces, brackets, periods in column names
names(df) <- gsub("\\s+", "", names(df)) names(df) <- gsub("\\(|\\)", "", names(df)) names(df) <- gsub("\\.", "", names(df)) cat(" 💅 Column names fixed (no spaces, brackets, periods)\n")
Data Variable
https://osf.io/mp9td/
preflight.r
1,012
initialization of the vectors with the names of the modueles/variables
names.modules.df.w <- names.var.modules <- NULL
Data Variable
https://osf.io/kgtx6/
f_readRShare.R
1,013
list of the directories included in the datadir directory
my.dirlist <- list.dirs(path = datadir) if (length(my.dirlist) == 0) stop("There are no subdirectories in the directory that you selected.")
Data Variable
https://osf.io/kgtx6/
f_readRShare.R
1,014
creates a list with the names of the variables included for each module
names.var.modules <- vector("list", num.waves) names(names.var.modules) <- paste("Wave", waves) if(verbose) cat("Reading data from the selected modules within the waves. \n")
Data Variable
https://osf.io/kgtx6/
f_readRShare.R
1,015
check which of the specified variables are actually present in the downloaded data
which.var.ok <- variables.in.modules[[i.mod]] %in% names(new.data) if (any(!which.var.ok)) warning( "Some of the variables that you selected from module ", modules[i.mod], " in wave ", waves[i.wave], " are not included in the data set. \n The variables that could not be imported were: ", variables.in.modules[[i.mod]][!which.var.ok], ". Please check these variables, the other variables were exported. \n" ) new.data <- select(new.data, variables.in.modules[[i.mod]][which.var.ok]) } names(new.data)[-1] <- paste(names(new.data)[-1], modules[i.mod], sep = "...")
Data Variable
https://osf.io/kgtx6/
f_readRShare.R
1,016
Trim outliers Perform winsorizing (replacefor each individual seperatelyvalues below 5th percentile and values above 95th percentile with 5th and 95th percentile values respectively)
for(i in min(all.df$person):max(all.df$person)){ all.df$zw.HR[all.df$person == i] <- Winsorize(all.df$z.HR[all.df$person==i]) }
Data Variable
https://osf.io/qj86m/
2_data_prep_merge.R
1,017
Create a lag variable the data is lag within person and within days
lag.Y = function(data){ Y_lag = rep(0,nrow(data)) subjno.i = unique(data$subjno) for (i in subjno.i){ n.i = which(data$subjno==i) Y_lag[n.i] = shift(data$Y[n.i],1) } return(Y_lag) }
Data Variable
https://osf.io/vguey/
lag.Y.R
1,018
Personality models Extract standardized parameters and N from personality models
Values_Analysis1_Model1_Pers <- Values_Personality[which(Values_Personality$analysis == "analysis1" & ((Values_Personality$study %in% c("S1", "S2") & Values_Personality$DV == "well_being") | (Values_Personality$study == "S3" & Values_Personality$DV == "affect_balance")) & Values_Personality$output %in% c("standardized", "N")), ] Values_Analysis1_Model2_Pers <- Values_Personality[which(Values_Personality$analysis == "analysis2" & ((Values_Personality$study %in% c("S1", "S2") & Values_Personality$DV == "well_being") | (Values_Personality$study == "S3" & Values_Personality$DV == "affect_balance")) & Values_Personality$output %in% c("standardized", "N")), ] Values_Analysis1_Model3_Pers <- Values_Personality[which(Values_Personality$analysis == "analysis3" & ((Values_Personality$study %in% c("S1", "S2") & Values_Personality$DV == "well_being") | (Values_Personality$study == "S3" & Values_Personality$DV == "affect_balance")) & Values_Personality$output %in% c("standardized", "N")), ]
Data Variable
https://osf.io/nxyh3/
MainTables.R
1,019
Extract withinperson variances of interactions with close peers, family, and weak ties from unstandardized models
variances <- Values_Base$est[which(Values_Base$analysis == "analysis3" & ((Values_Base$study %in% c("S1", "S2") & Values_Base$DV == "well_being") | (Values_Base$study == "S3" & Values_Base$DV == "affect_balance")) & Values_Base$output == "unstandardized" & Values_Base$paramHeader == "Variances" & Values_Base$param %in% c("PEERS", "FAMILY", "WEAK_TIES") & Values_Base$BetweenWithin == "Within")] rows <- which(Values_Analysis1_Model3$paramHeader %in% c("S1|WB.ON", "S2|WB.ON", "S3|WB.ON") & Values_Analysis1_Model3$param %in% c("PEERS", "FAMILY", "WEAK_TIES")) # within-person effects variances <- Values_Personality$est[which(Values_Personality$analysis == "analysis3" & ((Values_Personality$study %in% c("S1", "S2") & Values_Personality$DV == "well_being") | (Values_Personality$study == "S3" & Values_Personality$DV == "affect_balance")) & Values_Personality$output == "unstandardized" & Values_Personality$paramHeader == "Variances" & Values_Personality$param %in% c("PEERS", "FAMILY", "WEAK_TIES") & Values_Personality$BetweenWithin == "Within")] rows <- which(Values_Analysis1_Model3_Pers$paramHeader %in% c("S1|WB.ON", "S2|WB.ON", "S3|WB.ON") & Values_Analysis1_Model3_Pers$param %in% c("PEERS", "FAMILY", "WEAK_TIES")) # within-person effects
Statistical Modeling
https://osf.io/nxyh3/
MainTables.R
1,020
Model selection for four data sets First find bestfitting random effect model, then test for fixed effect predictors Process is backward by elimintating weakest terms sequentially, starting with full model, until only significant effects remain Nested model comparisons (likelihood ratio tests using anova command) are used to select best fitting models _ Pair Experiment 1 Random effects: selecting empty model
pair1_rand_full <- lmer(distance ~ (1 | group) + (1 + session0 | pair), data = pair_data1) # full random model;; fails to converge pair1_rand_full <- lmer(distance ~ (1 | group) + (1 + session0 | pair), data = pair_data1, control = lmerControl(optimizer = "bobyqa")) # full random model;; uses bobyqa optimizer pair1_rand2 <- lmer(distance ~ (1 + session0 | pair), data = pair_data1) # drops group ran.intercept;; fails to converge pair1_rand2 <- lmer(distance ~ (1 + session0 | pair), data = pair_data1, control = lmerControl(optimizer = "bobyqa")) # drops group ran.intercept;; uses bobyqa optimizer;; BEST pair1_rand3 <- lmer(distance ~ (1 | pair), data = pair_data1) # drops random slope
Statistical Modeling
https://osf.io/67ncp/
duque_etal_2020_rcode.R
1,021
Pearson's correlation calculation
calc_r <- function(model_vector, data_vector, S_0, D_0, M_0, E_0, filename) { sst_mean <- mean(data_vector) sst_vector <- (data_vector - sst_mean) ^ 2 sst <- sum(sst_vector) ssr_vector <- (data_vector - model_vector) ^ 2 ssr <- sum(ssr_vector) r_sq <- 1 - (ssr / sst) cat(r_sq, file = paste(format(Sys.time(),"%Y_%m_%d_%H_%M"), filename, "r_sq", "S", S_0, "D", D_0, "M", M_0, "E", E_0, ".txt", sep = "_")) return(r_sq) } r_sq <- calc_r(CO2_flux_ratios_hat_median, data_vector, S_0, D_0, M_0, E_0, filename)
Statistical Test
https://osf.io/7mey8/
stan_AWB_adriana_pools5i_vary_mic.r
1,022
Data wrangling recode values for missing data (9, 1) in whole dataset as NA
data <- data %>% mutate_all(~na_if(., -9)) data <- data %>% mutate_all(~na_if(., -1))
Data Variable
https://osf.io/r4wg2/
elsa_analyses.R
1,023
age recode values of 99 as missing
data$indager.w2[data$indager.w2 == 99] <- NA data$age <- data$indager.w2
Data Variable
https://osf.io/r4wg2/
elsa_analyses.R
1,024
Fit models with trimmed weights Weighted regression model for SciPop Score (Goertz approach)
m3.scipopgoertz.trim.svyglm.fit <- svyglm(scipopgoertz ~ age + gender + education.comp + education.uni + sciprox.score + urbanity.log + languageregion.ger + languageregion.ita + polorientation + religiosity + interestscience + sciliteracy + trustscience + trustscientists, design = bar.design.scipopgoertz.trim, family = gaussian, na.action = na.omit)
Statistical Modeling
https://osf.io/qj4xr/
06_sensitivity-tests.R
1,025
for each row assign fixation probability (1 or 0) to each picture based on the activation !! need a better decision criteria when the activations are the same;; !! right now it assigns '1' to both
dt.act$max.act = apply(dt.act[,4:7], 1, max) dt.act = subset(dt.act, max.act != 0)
Data Variable
https://osf.io/fsbzw/
plot.fix.e1.R
1,026
4.4.4) Create data where u(x) is at sample means to get residuals based on rest of models to act as yobs Recall: columns 1 & 2 have y and u(x) in obs.data
data.xufixed =data.obs data.xufixed[,2]=mean(data.obs[,2]) #Note, the 1st predictor, 2nd columns, is always the one hypothesized to be u-shaped
Data Variable
https://osf.io/hu2n8/
Simonsohn_twolines_tweaked.R
1,027
6 RUN TWO LINE REGRESSIONS 6.1 First an interrupted regression at the midpoint of the flat region
rmid=reg2(f,xc=median(xflat),graph=0, axislabels=axislabels)
Statistical Modeling
https://osf.io/hu2n8/
Simonsohn_twolines_tweaked.R
1,028
Pairwise comparison of optimism scores for each cue and table Wilcoxon signedrank test
cue_diff_wilcox_ts = wilcox.paired.multcomp( opt_score ~ cue | id, subset(jbt_all, jbt_all$cjb_test == "ts"), p.method = "holm") cue_diff_wilcox_tunnel = wilcox.paired.multcomp( opt_score ~ cue | id, subset(jbt_all, jbt_all$cjb_test == "tunnel"), p.method = "holm")
Statistical Test
https://osf.io/z6nm8/
Stats_figures_JBT.R
1,029
round the numeric values (p that is not < 0.001)
cue_diff_wilcox_ts$p.value[numeric_values] <- round(as.numeric(cue_diff_wilcox_ts$p.value[numeric_values]), 3) names(cue_diff_wilcox_ts) <- c("Cues compared","p-value")
Data Variable
https://osf.io/z6nm8/
Stats_figures_JBT.R
1,030
new tibble with IDs and emails
wos_emails <- tibble( "responseID" = wos$response_ID, "email" = wos$email ) aaas_emails <- tibble( "responseID" = aaas$response_ID, "email" = aaas$email )
Data Variable
https://osf.io/3bn9u/
4_1_deidentification.R
1,031
drop rows with empty email fields
wos_emails <- drop_na( wos_emails, email ) aaas_emails <- drop_na( aaas_emails, email )
Data Variable
https://osf.io/3bn9u/
4_1_deidentification.R
1,032
getmode() Get mode of a variable Input: numeric vector Output: single number
getmode <- function(v) { uniqv <- unique(v) uniqv[which.max(tabulate(match(v, uniqv)))] }
Data Variable
https://osf.io/8fzns/
2H_Recode_helper.R
1,033
For studyProgramme remove countries with only one programme
if(varname == "studyProgram" & length(lev) == 1){ return(NA) }
Data Variable
https://osf.io/8fzns/
2H_Recode_helper.R
1,034
Model for Frequency DV
mod1.1 <- lmer(frequency ~ ruleType + (1|sceneType) + (1|Participant), contrasts = my.contrasts, data = PD3a.Long) icc(mod1.1) summary(mod1.1) emmeans(mod1.1,list(pairwise~ruleType),adjust="satterthwaite") confint(mod1.1)
Data Variable
https://osf.io/dhmjx/
ExperimentS1-Analyses.R
1,035
Define functions Means, SDs, and two sample ttests comparing Swiss census data and the panel sample
census.msd <- function(v) { v <- reformulate(v) cbind( as.data.frame(svyby(v, ~t, dslong_dsgn, svymean, na.rm = T))[-c(1,3)], # M (exclude SE) sqrt(as.data.frame(svyby(v, ~t, dslong_dsgn, svyvar, na.rm = T)[[2]]))) %>% # SD (with a workaround) set_colnames(c("M", "SD")) %>% set_rownames(c("2019 (census)", "2019 (panel)")) }
Statistical Test
https://osf.io/3hgpe/
02_analysis.R
1,036
RQ1: Examine predictors of change in SciPop Scores and subscale scores .. Visual inspection with Sankey plot Visualize withinsubject change in SciPop Score in Sankey plot
dslongpnl %>% group_by(t, scipopgoertz) %>% summarise(scipopgoertz_freq = n()) %>% merge(dslongpnl, by = c("scipopgoertz", "t")) %>% transform(scipopgoertz_lvls = factor(scipopgoertz, levels = c("5", "4.5", "4", "3.5", "3", "2.5", "2", "1.5", "1", "NA"))) %>% replace_na(list(scipopgoertz_lvls = "NA")) %>% ggplot(aes(x = t, stratum = scipopgoertz_lvls, alluvium = id, y = scipopgoertz_freq, fill = scipopgoertz_lvls, label = scipopgoertz_lvls)) + scale_x_discrete(expand = c(.1, .1)) + scale_fill_viridis_d() + geom_flow(width = .1) + geom_stratum(alpha = .5, width = .1) + geom_text(stat = "stratum", size = 4) + ggtitle("Sankey plot of within-subject change in SciPop Score") + theme_minimal() + theme(legend.position = "none", panel.grid = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank())
Visualization
https://osf.io/3hgpe/
02_analysis.R
1,037
H1 analyses .. Descriptive analyses Plot means, SDs, skewness, kurtosis of alternative SciPop Scores
meantbl <- as.data.frame(matrix(0, nrow = 2)) groups <- quos(scipopgoertz, scipopbollenm, scipopbollencfa, scipopsartori75, scipopsartoricat) for (j in seq_along(groups)) { meantbl <- cbind(meantbl, group_by(dslongpnl, t) %>% summarise(mean = mean(!!groups[[j]], na.rm = T), sd = sd(!!groups[[j]], na.rm = T), skewness = skewness(!!groups[[j]], na.rm = T), kurtosis = kurtosis(!!groups[[j]], na.rm = T))) names(meantbl)[names(meantbl) == "mean"] <- paste0(quo_text(groups[[j]]), " (M)") names(meantbl)[names(meantbl) == "sd"] <- paste0(quo_text(groups[[j]]), " (SD)") names(meantbl)[names(meantbl) == "skewness"] <- paste0(quo_text(groups[[j]]), " (Skewness)") names(meantbl)[names(meantbl) == "kurtosis"] <- paste0(quo_text(groups[[j]]), " (Kurtosis)") meantbl <- select(meantbl, contains("scipop")) %>% set_rownames(c("2019", "2020")) }
Visualization
https://osf.io/3hgpe/
02_analysis.R
1,038
save means and compute their higher order terms
dfs$x.mean <- mean( dfs$x, na.rm = TRUE ) dfs$y.mean <- mean( dfs$y, na.rm = TRUE ) dfs$x2.mean <- dfs$x.mean^2 dfs$xy.mean <- dfs$x.mean*dfs$y.mean dfs$y2.mean <- dfs$y.mean^2 dfs }
Statistical Modeling
https://osf.io/jhyu9/
PrepareData.R
1,039
add column indicating if individual gave birth during testing (this will help with age classification)
birthsanc <- read_excel("motherssanctuary.xlsx", col_types=c("text", "date")) bigdatasanctuary$Individual<-as.factor(bigdatasanctuary$Individual) birthsanc$Mother <- as.factor(birthsanc$Mother) bigdatasanctuary$mother <- ifelse(bigdatasanctuary$Individual %in% birthsanc$Mother, "yes", "no") bigdatasanctuary$birth <- birthsanc$Date[match(bigdatasanctuary$Individual, birthsanc$Mother)] bigdatasanctuary$birth <- as.Date(bigdatasanctuary$birth, format="YY-mm-dd") bigdatasanctuary$testbeforebirth <- ifelse(!is.na(bigdatasanctuary$birth) & bigdatasanctuary$birth > bigdatasanctuary$TestDate, "yes", "no") bigdatasanctuary$AgeAtTesting <- as.numeric(bigdatasanctuary$AgeAtTesting)
Data Variable
https://osf.io/p2xgq/
Analyses for revision
1,040
Step 1 compare the rising ridge asymmetric congruence model (RRCA) and the full thirdorder model (cubic)
rrca_comp <- compare2(rrca_myrsa, "RRCA", "cubic") rrca_comp
Statistical Modeling
https://osf.io/drv3a/
illustration.R
1,041
How much variance in the outcome can be explained by the full thirdorder polynomial model/the rising ridge leveldependent congruence model?
getPar(rrcl_myrsa, model="cubic", type="R2") getPar(rrcl_myrsa, model="RRCL", type="R2")
Statistical Modeling
https://osf.io/drv3a/
illustration.R
1,042
get subsequent fixation index (+1) and retrieve row number using fi_pars and assign
scope_start[i] <- fi_pairs$fistart[scope_start_fis[i] + 1] } return(scope_start) }
Data Variable
https://osf.io/mp9td/
get_first_free_fi.R
1,043
Exclude participants who completed less than 10 surveys
dat <- dat[-which(dat$N < 10), ] dim(dat) # 36074 assessments length(unique(dat$id)) # 1177 participants (1109 participants excluded)
Data Variable
https://osf.io/nxyh3/
01b_DataPrep_Study2.R
1,044
define function to compute colors and point sizes that yield 3d effect
points3d <- function(data, xname, yname, zname, cex.limit.close = 1.7, cex.limit.far = 1, col.limit.close = 0.1, col.limit.far = 0.8, adapted_eye = list(x=-12, y=-16, z=2) ){
Visualization
https://osf.io/fbshg/
ComF_helpers.R
1,045
for each row of the data, compute euclidean distance between the person's 3dim point and the plane
distance <- abs( (data[,xname] - a$x) * n$x + (data[,yname] - a$y) * n$y + (data[,zname] - a$z) * n$z ) / sqrt(n$x^2 + n$y^2 + n$z^2)
Data Variable
https://osf.io/fbshg/
ComF_helpers.R
1,046
Calculate delta change in testosterone pivot data sets for delta values
hormones_wide <-hormones %>% pivot_wider(id_cols = c("id", "sex"), names_from = condition, values_from = t_conc_corr) %>% mutate(delta_t = back_home - baseline) delta_t <- left_join(hormones, hormones_wide) delta_t <- delta_t %>% filter(condition == "baseline")%>% filter(!is.na(delta_t))
Data Variable
https://osf.io/3bpn6/
af_testosterone_analysis.R
1,047
Plot sex and time point Boxplot for sex differences
t_condition <- hormones %>% ggplot(aes(x = condition, y = log(t_conc_corr), fill = sex)) + geom_boxplot(outlier.shape = NA, width = 0.7) +
Visualization
https://osf.io/3bpn6/
af_testosterone_analysis.R
1,048
Network Estimation Ising Model (Binary Data) can be estimated via estimateNetwork variables automatically binarized at median estimate regularized logistic nodewise regression network define where to binarize variables eLASSO (LASSO with EBIC model selection) listwise deletion of missing values (pairwise not possible for regressions)
Ising_net <- estimateNetwork(data, default = "IsingFit", missing = "listwise", rule = "OR")
Statistical Modeling
https://osf.io/b4gc7/
workshop_example.R
1,049
compare GGM and Ising model correlating weights matrices
cor.test(Wmat_GGM[upper.tri(Wmat_GGM)], Wmat_Ising[upper.tri(Wmat_Ising)]) #.80
Statistical Modeling
https://osf.io/b4gc7/
workshop_example.R
1,050
create a storage container (i.e. a empty lists) for all hit_names ... ... that track looking times over all trials (e.g., looking_times$left)
looking_times <- setNames(vector("list", length(hit_names)), hit_names)
Data Variable
https://osf.io/yfegm/
getLooks.r
1,051
create a storage container for all looking frequencies (i.e., counting the number of looks within an AOI)
looking_frequencies <- setNames(vector("list", length(hit_names)), hit_names)
Data Variable
https://osf.io/yfegm/
getLooks.r
1,052
init storage containers for looking frequencies
current_trial_total_looks <- setNames(vector("list", length(hit_names)), hit_names) for (hn in hit_names) {
Data Variable
https://osf.io/yfegm/
getLooks.r
1,053
get first and last FixationIndex (remove NAs), which define the boundaries of a single trial
min_FixationIndex <- min(inter_trial_FixationIndexes, na.rm = TRUE) max_FixationIndex <- max(inter_trial_FixationIndexes, na.rm = TRUE)
Data Variable
https://osf.io/yfegm/
getLooks.r
1,054
space between axis label and tick mark labels
my_settings$layout.widths$ylab.axis.padding <- 0.2 my_settings$layout.heights$axis.xlab.padding <- 0.2 my_settings$box.rectangle$col = 1 my_settings$box.umbrella$col = 1 my_settings$box.dot$col = 1 my_settings$plot.symbol$col = 1
Visualization
https://osf.io/mc26t/
my_utils.R
1,055
Overlay the basic grid with colourful grid corresponding to the limits of sensitive period rectangles. These colourful lines should start in the points indicating the change values.
cols<-colscale[sapply(result$p1,function(x){which.min(abs(x-scaleseq))})] cols<-colscale[sapply(result$p1.rand[,exrun],function(x){which.min(abs(x-scaleseq))})]
Visualization
https://osf.io/greqt/
06_extrapermut_comaprison_with_random.R
1,056
Skew effect
neg <- apply(chains[,c(1,3)], 1, sum) pos <- apply(chains[,c(1,2)], 1, sum) quantile(neg-pos, prob=c(.025, .975)) neg <- apply(chains[,c(1,3)], 1, sum) pos <- apply(chains[,c(1,2)], 1, sum) quantile(pos-neg, prob=c(.025, .975))
Visualization
https://osf.io/8abj4/
Exp1.R
1,057
Fit hierarchical Bayesian model
fit.HBM <- stan(file='CAM_full_1.stan', data=c('Nobs','Nind','stim','bias','RM','AS','B1','id','mid','stim_sizes','Nstim'), chains=4, iter=2500, cores=no_cores, control=list(adapt_delta=.90, max_treedepth=15)) fit.HBM sum(summary(fit.HBM)$summary[,'Rhat'] > 1.01) pars <- extract(fit.HBM)
Statistical Modeling
https://osf.io/8abj4/
Exp1.R
1,058
Compute probabilities using MNL model
P[['choice']] = apollo_mnl(mnl_settings1, functionality) P[["indic_cost_tap"]] = apollo_mnl(mnl_settings2, functionality) P[["indic_na1"]] = apollo_mnl(mnl_settings3, functionality) P[["indic_na2"]] = apollo_mnl(mnl_settings4, functionality) P[["indic_na3"]] = apollo_mnl(mnl_settings5, functionality) P[["indic_cost_bottle"]] = apollo_ol(ol_settings5, functionality) P[["indic_bill"]]= apollo_normalDensity(normalDensity_settings1,functionality) P[["indic_qual"]] = apollo_ol(ol_settingsB1, functionality) P[["indic_qual_f"]] = apollo_ol(ol_settingsB3, functionality) P = apollo_combineModels(P, apollo_inputs, functionality)
Statistical Modeling
https://osf.io/6pq9e/
Model.R
1,059
d) Ftest (Stephan Gries 2013, p. 218) [only for normally distributed variables!] use var.test() Output interpretation: 1) Is p > .05?;; 2) Does the CI include 1?
F.lextale <- var.test(pp.explicit.incidental$lextale~pp.explicit.incidental$learningtype);; F.lextale
Statistical Test
https://osf.io/938ye/
Apriori_group_differences.R
1,060
c) Wilcoxon ranksum test ( MannWhitney U test) [Nonparametric alternative if normality is violated, or if you have ordinal data] Continuous variables: ratioscaled lextale
wilcox.lextale <- wilcox.test(lextale~learningtype, data=pp.explicit.incidental, paired=FALSE);; wilcox.lextale
Statistical Test
https://osf.io/938ye/
Apriori_group_differences.R
1,061
Selfrated variables: ordinal proficiency_overall
wilcox.proficiency_overall <- wilcox.test(proficiency_overall~learningtype, data=pp.explicit.incidental, paired=FALSE);; wilcox.proficiency_overall
Data Variable
https://osf.io/938ye/
Apriori_group_differences.R
1,062
Effect size (approximate) for Wilcoxon ranksum test Write the function (from Field, Miles & Fiels 2012, p.665)
rWilcox <- function(wilcoxModel, N){ z <- qnorm(wilcoxModel$p.value/2) r <- z/sqrt(N) cat(wilcoxModel$data.name, "Effect size, r = ", r) }
Statistical Modeling
https://osf.io/938ye/
Apriori_group_differences.R
1,063
create new variable for the IRV intraindividual response variability
data$irv <- irv( dplyr::select( data, belonging, control, meaningful_existence, self_esteem ), na.rm = TRUE, split = FALSE)
Data Variable
https://osf.io/bhrwx/
script_for_the_analysis_of_game_data.R
1,064
display the correlations as a histogram and heatmap
cor_matrix_half <- cor_matrix[upper.tri(cor_matrix)] mean(cor_matrix_half) sd(cor_matrix_half) hist(as.vector(cor_matrix_half), breaks=24, cex.axis=2) # Note: Novich et al. suppressed correlations of r<.4 in their visualisation heatmap(x = cor_matrix, symm = TRUE)
Visualization
https://osf.io/r24vb/
clustering_syn_types.R
1,065
Create stringent dataset Exclude People with Strange Response Patterns These are identified as subclusters in the inclusive dendogram that group together
inclusive_data$weird_responses = inclusive_data$body_postures_shape + inclusive_data$punctuation_shape + inclusive_data$letter_shape + inclusive_data$number_shape + inclusive_data$people_name_shape + inclusive_data$english_word_shape + inclusive_data$foreign_word_shape + inclusive_data$tastes_taste + inclusive_data$smells_smell + inclusive_data$noises_noise + inclusive_data$music_music + inclusive_data$colour_colour + inclusive_data$shapes_shape + inclusive_data$smells_taste + inclusive_data$tastes_smell + inclusive_data$voices_noise + inclusive_data$voices_music + inclusive_data$noises_music + inclusive_data$music_noise hist(inclusive_data$weird_responses) table(inclusive_data$weird_responses)
Data Variable
https://osf.io/r24vb/
clustering_syn_types.R
1,066
gives the prevalence of each cluster of data
colMeans(short_data) N_types <- matrix(apply(short_data[,1:i], 1, sum, na.rm=TRUE)) stringent_N_clusters <- cbind(stringent_N_clusters,N_types) }
Data Variable
https://osf.io/r24vb/
clustering_syn_types.R
1,067
create a continuoius time metric (seconds since midnight of day0)
dat$sec_midnight.day0 <- dat$start.secmidnight + dat$day * 86400
Data Variable
https://osf.io/6krj7/
01_addlagvars.R
1,068
create a variable indicating, if the current observation is the first observation of the day ("morning") this variable is 1, if the current observation was obtained on a different day than the previous observation
dat[!is.na(dat$lagday) & dat$day!=dat$lagday, "morning"] <- 1 dat[!is.na(dat$lagday) & dat$day==dat$lagday, "morning"] <- 0
Data Variable
https://osf.io/6krj7/
01_addlagvars.R
1,069
create continuous time variable in hours and seconds
data$time_to_hours = lubridate::hour(data$timestamp.corrected) + lubridate::minute(data$timestamp.corrected)/60 + lubridate::second(data$timestamp.corrected)/3600 data$time_to_sec = data$time_to_hours*60*60 return(data) }
Data Variable
https://osf.io/b7krz/
timestamp_correction.R
1,070
set font size for facet labels
strip.text.x = element_text(size = font_size_facets_x), strip.text.y = element_text(size = font_size_facets_y), strip.text.x = element_text(size = font_size_facets_x), strip.text.y = element_text(size = font_size_facets_y),
Visualization
https://osf.io/dpkyb/
my_ggplot_themes.R