|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- tabular-classification |
|
- tabular-regression |
|
- graph-ml |
|
|
|
|
|
|
|
|
|
- other |
|
tags: |
|
- recommendation |
|
- recsys |
|
- short-video |
|
- clips |
|
- retrieval |
|
- ranking |
|
- user-modeling |
|
- industrial |
|
- real-world |
|
size_categories: |
|
- 10B<n<100B |
|
language: |
|
- en |
|
pretty_name: VK-LSVD |
|
--- |
|
|
|
|
|
# VK-LSVD: Large Short-Video Dataset |
|
**VK-LSVD** is the largest open industrial short-video recommendation dataset with real-world interactions: |
|
- **40B** unique user–item interactions with rich feedback (`timespent`, `like`, `dislike`, `share`, `bookmark`, `click_on_author`, `open_comments`) and |
|
context (`place`, `platform`, `agent`); |
|
- **10M** users (with `age`, `gender`, `geo`); |
|
- **20M** short videos (with `duration`, `author_id`, content `embedding`); |
|
- **Global Temporal Ordering** across **six consecutive months** of user interactions. |
|
|
|
**Why short video?** Users often watch dozens of clips per session, producing dense, time-ordered signals well suited for modeling. |
|
Unlike music, podcasts, or long-form video, which are often consumed in the background, short videos are foreground by design. They also do not exhibit repeat exposure. |
|
Even without explicit feedback, signals such as skips, completions, and replays yield strong implicit labels. |
|
Single-item feeds also simplify attribution and reduce confounding compared with multi-item layouts. |
|
|
|
|
|
--- |
|
|
|
> **Note:** The test set will be released after the upcoming challenge. |
|
|
|
--- |
|
|
|
[📊 Basic Statistics](#basic-statistics) • [🧱 Data Description](#data-description) • [⚡ Quick Start](#quick-start) • [🧩 Configurable Subsets](#configurable-subsets) |
|
|
|
--- |
|
|
|
## Basic Statistics |
|
- Users **10,000,000** |
|
- Items **19,627,601** |
|
- Unique interactions **40,774,024,903** |
|
- Interactions density **0.0208%** |
|
- Total watch time: **858,160,100,084 s** |
|
- Likes: **1,171,423,458** |
|
- Dislikes: **11,860,138** |
|
- Shares: **262,734,328** |
|
- Bookmarks: **40,124,463** |
|
- Clicks on author: **84,632,666** |
|
- Comment opens: **481,251,593** |
|
|
|
--- |
|
|
|
## Data Description |
|
**Privacy-preserving taxonomy** — all categorical metadata (`user_id`, `geo`, `item_id`, `author_id`, `place`, `platform`, `agent`) is anonymized into stable integer IDs (consistent across splits; no reverse mapping provided). |
|
|
|
### Interactions |
|
[interactions](https://huggingface.co/datasets/deepvk/VK-LSVD/tree/main/interactions) |
|
Each row is one observation (a short video shown to a user) with feedback and context. There are no repeated exposures of the same user–item pair. |
|
**Global Temporal Split (GTS):** `train` / `validation` / `test` preserve time order — train on the past, validate/test on the future. |
|
**Chronology:** Files are organized by weeks (e.g., week_XX.parquet); rows within each file are in increasing timestamp order. |
|
|
|
| Field | Type | Description | |
|
|-----|----|-----------| |
|
|`user_id`|uint32|User identifier| |
|
|`item_id`|uint32|Video identifier| |
|
|`place`|uint8|Place: feed/search/group/… (24 ids)| |
|
|`platform`|uint8|Platform: Android/Web/TV/… (11 ids) | |
|
|`agent`|uint8|Agent/client: browser/app (29 ids)| |
|
|`timespent`|uint8|Watch time (0–255 seconds)| |
|
|`like`|boolean|User liked the video| |
|
|`dislike`|boolean|User disliked the video| |
|
|`share`|boolean|User shared the video| |
|
|`bookmark`|boolean|User bookmarked the video| |
|
|`click_on_author`|boolean|User opened author page| |
|
|`open_comments`|boolean|User opened the comments section | |
|
|
|
### Users metadata |
|
[users_metadata.parquet](metadata/users_metadata.parquet) |
|
| Field | Type | Description | |
|
|-----|----|-----------| |
|
|`user_id`|uint32|User identifier| |
|
|`age`|uint8|Age (18-70 years)| |
|
|`gender`|uint8|Gender| |
|
|`geo`|uint8|Most frequent user location (80 ids)| |
|
|`train_interactions_rank`|uint32|Popularity rank for sampling (lower = more interactions)| |
|
|
|
### Items metadata |
|
[items_metadata.parquet](metadata/items_metadata.parquet) |
|
|
|
| Field | Type | Description | |
|
|-----|----|-----------| |
|
|`item_id`|uint32|Video identifier| |
|
|`author_id`|uint32|Author identifier| |
|
|`duration`|uint8|Video duration (seconds)| |
|
|`train_interactions_rank`|uint32|Popularity rank for sampling (lower = more interactions)| |
|
|
|
### Embeddings: variable width |
|
**Embeddings are trained strictly on content** (video/description/audio, etc.) — no collaborative signal mixed in. |
|
**Components are ordered**: the _dot product_ of the first n components approximates the _cosine_ similarity of the original production embeddings. |
|
This lets researchers pick any dimensionality (**1…64**) to trade quality for speed and memory. |
|
|
|
|
|
[item_embeddings.npz](metadata/item_embeddings.npz) |
|
|
|
| Field | Type | Description | |
|
|-----|----|-----------| |
|
|`item_id`|uint32|Video identifier| |
|
|`embedding`|float16[64]|Item content embedding with ordered components| |
|
|
|
--- |
|
|
|
## Quick Start |
|
|
|
|
|
### Load a small subsample |
|
|
|
|
|
```python |
|
from huggingface_hub import hf_hub_download |
|
import polars as pl |
|
import numpy as np |
|
|
|
subsample_name = 'up0.001_ip0.001' |
|
content_embedding_size = 32 |
|
|
|
train_interactions_files = [f'subsamples/{subsample_name}/train/week_{i:02}.parquet' |
|
for i in range(25)] |
|
val_interactions_file = [f'subsamples/{subsample_name}/validation/week_25.parquet'] |
|
|
|
metadata_files = ['metadata/users_metadata.parquet', |
|
'metadata/items_metadata.parquet', |
|
'metadata/item_embeddings.npz'] |
|
|
|
for file in (train_interactions_files + |
|
val_interactions_file + |
|
metadata_files): |
|
hf_hub_download( |
|
repo_id='deepvk/VK-LSVD', repo_type='dataset', |
|
filename=file, local_dir='VK-LSVD' |
|
) |
|
|
|
train_interactions = pl.concat([pl.scan_parquet(f'VK-LSVD/{file}') |
|
for file in train_interactions_files]) |
|
train_interactions = train_interactions.collect(engine='streaming') |
|
|
|
val_interactions = pl.read_parquet(f'VK-LSVD/{val_interactions_file[0]}') |
|
|
|
train_users = train_interactions.select('user_id').unique() |
|
train_items = train_interactions.select('item_id').unique() |
|
|
|
item_ids = np.load('VK-LSVD/metadata/item_embeddings.npz')['item_id'] |
|
item_embeddings = np.load('VK-LSVD/metadata/item_embeddings.npz')['embedding'] |
|
|
|
mask = np.isin(item_ids, train_items.to_numpy()) |
|
item_ids = item_ids[mask] |
|
item_embeddings = item_embeddings[mask] |
|
item_embeddings = item_embeddings[:, :content_embedding_size] |
|
|
|
users_metadata = pl.read_parquet('VK-LSVD/metadata/users_metadata.parquet') |
|
items_metadata = pl.read_parquet('VK-LSVD/metadata/items_metadata.parquet') |
|
|
|
users_metadata = users_metadata.join(train_users, on='user_id') |
|
items_metadata = items_metadata.join(train_items, on='item_id') |
|
items_metadata = items_metadata.join(pl.DataFrame({'item_id': item_ids, |
|
'embedding': item_embeddings}), |
|
on='item_id') |
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## Configurable Subsets |
|
|
|
We provide several ready-made slices and simple utilities to compose your own subset that matches your task, data budget, and hardware. |
|
You can control density via popularity quantiles (`train_interactions_rank`), draw random users, |
|
or pick specific time windows — while preserving the Global Temporal Split. |
|
|
|
Representative subsamples are provided for quick experiments: |
|
|
|
| Subset | Users | Items | Interactions | Density | |
|
|-----|----:|-----------:|-----------:|-----------:| |
|
|`whole`|10,000,000|19,627,601|40,774,024,903|0.0208%| |
|
|`ur0.1`|1,000,000|18,701,510|4,066,457,259|0.0217%| |
|
|`ur0.01`|100,000|12,467,302|407,854,360|0.0327%| |
|
|`ur0.01_ir0.01`|90,178|125,018|4,044,900|0.0359%| |
|
|`up0.01_ir0.01`|100000|171106|38,404,921|0.2245%| |
|
|`ur0.01_ip0.01`|99,893|196,277|191,625,941|0.9774%| |
|
|`up0.01_ip0.01`|100,000|196,277|1,417,906,344|7.2240%| |
|
|`up0.001_ip0.001`|10,000|19,628|47,976,280|24.4428%| |
|
|`up-0.9_ip-0.9`|8,939,432|17,654,817|2,861,937,212|0.0018%| |
|
|
|
|
|
|
|
- `urX` — X fraction of **r**andom **u**sers (e.g., `ur0.01` = 1% of users). |
|
- `ipX` — X fraction of **p**opular **i**tems (by `train_interactions_rank`) |
|
- Negative X denotes the least-popular fraction (e.g., `−0.9` → bottom 90%). |
|
|
|
|
|
For example, to get [ur0.01_ip0.01](https://huggingface.co/datasets/deepvk/VK-LSVD/tree/main/subsamples/ur0.01_ip0.01) (1% of **r**andom **u**sers, 1% of most **p**opular **i**tems) use the snippet below. |
|
```python |
|
import polars as pl |
|
|
|
def get_sample(entries: pl.DataFrame, split_column: str, fraction: float) -> pl.DataFrame: |
|
if fraction >= 0: |
|
entries = entries.filter(pl.col(split_column) <= |
|
pl.col(split_column).quantile(fraction, |
|
interpolation='midpoint')) |
|
else: |
|
entries = entries.filter(pl.col(split_column) >= |
|
pl.col(split_column).quantile(1 + fraction, |
|
interpolation='midpoint')) |
|
return entries |
|
|
|
users = pl.scan_parquet('VK-LSVD/metadata/users_metadata.parquet') |
|
users_sample = get_sample(users, 'user_id', 0.01).select(['user_id']) |
|
|
|
items = pl.scan_parquet('VK-LSVD/metadata/items_metadata.parquet') |
|
items_sample = get_sample(items, 'train_interactions_rank', 0.01).select(['item_id']) |
|
|
|
interactions = pl.scan_parquet('VK-LSVD/interactions/validation/week_25.parquet') |
|
interactions = interactions.join(users_sample, on='user_id', maintain_order='left') |
|
interactions = interactions.join(items_sample, on='item_id', maintain_order='left') |
|
|
|
interactions_sample = interactions.collect(engine='streaming') |
|
``` |
|
|
|
To get [up-0.9_ip-0.9](https://huggingface.co/datasets/deepvk/VK-LSVD/tree/main/subsamples/up-0.9_ip-0.9) (90% of least **p**opular **u**sers, 90% of least **p**opular **i**tems) replace users and items sampling lines with |
|
```python |
|
users_sample = get_sample(users, 'train_interactions_rank', -0.9).select(['user_id']) |
|
items_sample = get_sample(items, 'train_interactions_rank', -0.9).select(['item_id']) |
|
``` |
|
|