Datasets:
user_id
uint32 | item_id
uint32 | place
uint8 | platform
uint8 | agent
uint8 | timespent
uint8 | like
bool | dislike
bool | share
bool | bookmark
bool | click_on_author
bool | open_comments
bool |
---|---|---|---|---|---|---|---|---|---|---|---|
5,470,747 | 414,687,932 | 0 | 1 | 1 | 38 | false | false | false | false | false | false |
448,331,816 | 353,509,534 | 0 | 0 | 0 | 51 | false | false | false | false | false | false |
466,185,997 | 600,829,563 | 1 | 1 | 1 | 33 | false | false | false | false | false | false |
339,696,933 | 148,499,563 | 0 | 0 | 0 | 3 | false | false | false | false | false | false |
502,079,659 | 478,004,276 | 0 | 0 | 0 | 2 | false | false | false | false | false | false |
397,469,627 | 448,856,419 | 4 | 1 | 1 | 2 | false | false | false | false | false | false |
189,076,271 | 174,758,905 | 1 | 1 | 1 | 1 | false | false | false | false | false | false |
309,578,801 | 356,679,574 | 0 | 0 | 0 | 67 | false | false | false | false | false | true |
263,600,275 | 572,129,294 | 1 | 0 | 0 | 9 | false | false | false | false | false | false |
35,622,850 | 89,910,920 | 0 | 0 | 0 | 18 | false | false | false | false | false | false |
384,450,902 | 69,905,978 | 0 | 1 | 1 | 1 | false | false | false | false | false | false |
260,561,403 | 232,686,378 | 0 | 1 | 1 | 3 | false | false | false | false | false | false |
89,800,020 | 358,439,180 | 1 | 1 | 1 | 5 | false | false | false | false | false | false |
113,239,860 | 224,595,037 | 2 | 0 | 0 | 5 | false | false | false | false | false | false |
266,185,993 | 221,938,893 | 0 | 0 | 0 | 1 | false | false | false | false | false | false |
423,232,336 | 49,047,567 | 1 | 0 | 0 | 11 | false | false | false | false | false | false |
215,819,302 | 436,222,820 | 0 | 0 | 0 | 28 | true | false | false | false | false | false |
341,866,343 | 517,623,261 | 1 | 1 | 1 | 3 | false | false | false | false | false | false |
351,582,550 | 408,710,727 | 0 | 1 | 1 | 3 | false | false | false | false | false | false |
441,854,058 | 220,158,920 | 1 | 1 | 1 | 5 | false | false | false | false | false | false |
317,397,614 | 415,666,341 | 4 | 1 | 1 | 38 | false | false | false | false | false | false |
440,371,970 | 526,531,201 | 1 | 0 | 0 | 24 | false | false | false | false | false | false |
424,525,127 | 211,909,844 | 0 | 0 | 0 | 47 | false | false | false | false | false | false |
12,462,495 | 70,558,648 | 0 | 1 | 1 | 54 | false | false | false | false | false | false |
491,375,129 | 110,684,246 | 1 | 1 | 1 | 2 | false | false | false | false | false | false |
184,586,616 | 452,484,244 | 0 | 1 | 1 | 1 | false | false | false | false | false | false |
501,442,989 | 519,440,183 | 1 | 1 | 1 | 32 | false | false | false | false | false | false |
160,943,996 | 311,630,993 | 0 | 0 | 0 | 17 | false | false | false | false | false | false |
466,000,871 | 232,895,881 | 1 | 0 | 0 | 3 | false | false | false | false | false | false |
98,459,011 | 582,753,113 | 1 | 1 | 1 | 1 | true | false | false | false | false | false |
43,937,347 | 536,742,687 | 0 | 1 | 1 | 7 | false | false | false | false | false | false |
217,101,110 | 376,703,007 | 1 | 0 | 0 | 4 | false | false | false | false | false | false |
480,007,226 | 133,349,414 | 0 | 0 | 0 | 4 | false | false | false | false | false | false |
128,921,856 | 397,979,425 | 1 | 1 | 1 | 7 | false | false | false | false | false | false |
246,919,163 | 35,086,492 | 0 | 0 | 0 | 28 | false | false | false | false | false | false |
345,740,257 | 542,451,410 | 1 | 1 | 1 | 3 | false | false | false | false | false | false |
170,981,674 | 227,660,597 | 1 | 0 | 0 | 4 | false | false | false | false | false | false |
34,301,714 | 6,835,107 | 1 | 0 | 0 | 16 | false | false | false | false | false | false |
415,510,988 | 355,403,363 | 1 | 1 | 1 | 23 | false | false | false | false | false | false |
430,631,249 | 333,704,761 | 1 | 0 | 0 | 7 | true | false | false | false | false | false |
49,518,175 | 43,170,146 | 1 | 1 | 1 | 1 | false | false | false | false | false | false |
355,713,901 | 567,289,653 | 0 | 1 | 1 | 16 | false | false | false | false | false | false |
17,078,694 | 446,991,761 | 0 | 1 | 1 | 33 | false | false | false | false | false | false |
180,860,992 | 331,089,783 | 0 | 0 | 0 | 5 | false | false | false | false | false | false |
65,218,218 | 185,839,034 | 0 | 0 | 0 | 4 | false | false | false | false | false | false |
383,410,220 | 586,449,195 | 0 | 1 | 1 | 2 | false | false | false | false | false | false |
96,305,698 | 407,717,497 | 1 | 1 | 1 | 61 | false | false | false | false | false | false |
394,924,434 | 454,133,051 | 0 | 0 | 0 | 2 | false | false | false | false | false | false |
305,679,960 | 314,983,465 | 6 | 0 | 0 | 1 | false | false | false | false | false | false |
53,365,995 | 374,702,848 | 1 | 1 | 1 | 23 | false | false | false | false | false | true |
157,464,662 | 282,752,903 | 6 | 0 | 0 | 1 | false | false | false | false | false | false |
307,336,358 | 105,968,011 | 0 | 1 | 1 | 2 | false | false | false | false | false | false |
332,495,472 | 576,618,296 | 1 | 3 | 1 | 7 | false | false | false | false | false | false |
236,457,820 | 179,513,218 | 1 | 1 | 1 | 111 | false | false | false | false | false | true |
176,116,456 | 445,552,206 | 1 | 1 | 1 | 4 | false | false | false | false | false | false |
360,215,224 | 435,305,261 | 0 | 0 | 0 | 1 | false | false | false | false | false | false |
339,604,227 | 77,720,756 | 0 | 0 | 0 | 12 | true | false | false | false | false | false |
374,119,407 | 17,704,233 | 0 | 0 | 0 | 6 | false | false | false | false | false | false |
456,422,641 | 69,905,978 | 0 | 0 | 0 | 1 | false | false | false | false | false | false |
168,402,063 | 55,581,238 | 3 | 1 | 1 | 35 | false | false | false | false | false | false |
107,882,212 | 597,448,950 | 0 | 1 | 1 | 50 | false | false | false | false | false | false |
177,172,684 | 279,914,616 | 1 | 1 | 1 | 64 | false | false | false | false | false | false |
383,258,838 | 337,728,229 | 0 | 1 | 1 | 2 | false | false | false | false | false | false |
375,413,059 | 267,727,527 | 1 | 0 | 0 | 24 | true | false | false | true | false | false |
316,272,346 | 575,116,147 | 1 | 1 | 1 | 9 | false | false | false | false | false | false |
220,691,194 | 415,145,912 | 1 | 0 | 0 | 37 | false | false | false | false | false | false |
294,419,880 | 478,257,777 | 1 | 0 | 0 | 15 | false | false | false | false | false | false |
88,212,493 | 483,374,919 | 1 | 2 | 2 | 15 | false | false | false | false | false | false |
136,881,224 | 109,431,567 | 1 | 1 | 1 | 108 | false | false | false | false | false | false |
192,421,268 | 497,297,832 | 1 | 1 | 1 | 42 | false | false | false | false | false | false |
70,250,220 | 120,553,892 | 0 | 0 | 0 | 2 | false | false | false | false | false | false |
164,558,305 | 407,460,235 | 0 | 0 | 0 | 1 | false | false | false | false | false | false |
66,600,863 | 599,124,881 | 1 | 1 | 1 | 8 | false | false | false | false | false | false |
15,758,567 | 445,552,206 | 0 | 1 | 1 | 1 | false | false | false | false | false | false |
426,358,459 | 103,295,189 | 1 | 1 | 1 | 1 | false | false | false | false | false | false |
465,817,485 | 298,389,988 | 0 | 1 | 1 | 2 | false | false | false | false | false | false |
337,603,762 | 13,222,064 | 0 | 0 | 0 | 29 | false | false | false | false | false | false |
247,673,417 | 138,745,412 | 0 | 0 | 0 | 89 | false | false | false | false | false | false |
92,361,758 | 86,493,726 | 1 | 1 | 1 | 255 | false | false | false | false | false | false |
459,938,731 | 595,687,795 | 1 | 1 | 1 | 38 | false | false | false | false | false | false |
42,816,821 | 404,801,443 | 1 | 1 | 1 | 8 | false | false | false | false | false | false |
47,937,150 | 324,297,268 | 1 | 0 | 0 | 255 | false | false | false | false | false | false |
31,695,891 | 461,923,579 | 1 | 1 | 1 | 86 | true | false | false | false | false | true |
430,257,489 | 332,348,866 | 1 | 1 | 1 | 47 | false | false | false | false | false | false |
123,833,165 | 242,603,493 | 1 | 1 | 1 | 2 | false | false | false | false | false | false |
224,977,481 | 463,830,959 | 2 | 0 | 0 | 41 | false | false | false | false | false | false |
290,881,677 | 175,617,916 | 0 | 0 | 0 | 4 | false | false | false | false | false | false |
100,596,649 | 189,439,483 | 1 | 0 | 0 | 8 | false | false | false | false | false | false |
11,933,445 | 59,445,167 | 1 | 1 | 1 | 3 | false | false | false | false | false | false |
82,720,987 | 143,222,291 | 0 | 1 | 1 | 26 | false | false | false | false | false | false |
324,254,860 | 550,708,089 | 1 | 1 | 1 | 18 | false | false | false | false | false | false |
472,173,042 | 533,133,485 | 3 | 0 | 0 | 39 | false | false | false | false | false | true |
429,356,030 | 594,385,074 | 0 | 0 | 0 | 3 | false | false | false | false | false | false |
37,758,362 | 348,654,597 | 0 | 1 | 1 | 3 | false | false | false | false | false | false |
120,297,105 | 239,019,781 | 0 | 0 | 0 | 71 | false | false | false | false | false | false |
123,097,641 | 521,798,630 | 1 | 1 | 1 | 142 | false | false | false | false | false | false |
129,181,313 | 72,303,206 | 1 | 0 | 0 | 57 | false | false | false | false | false | false |
156,070,850 | 259,959,114 | 1 | 1 | 1 | 46 | false | false | false | false | false | false |
185,558,623 | 171,643,760 | 1 | 0 | 0 | 50 | false | false | false | false | false | false |
14,064,745 | 20,327,222 | 1 | 1 | 1 | 41 | false | false | false | false | false | false |
VK-LSVD: Large Short-Video Dataset
VK-LSVD is the largest open industrial short-video recommendation dataset with real-world interactions:
- 40B unique user–item interactions with rich feedback (
timespent
,like
,dislike
,share
,bookmark
,click_on_author
,open_comments
) and context (place
,platform
,agent
); - 10M users (with
age
,gender
,geo
); - 20M short videos (with
duration
,author_id
, contentembedding
); - Global Temporal Ordering across six consecutive months of user interactions.
Why short video? Users often watch dozens of clips per session, producing dense, time-ordered signals well suited for modeling. Unlike music, podcasts, or long-form video, which are often consumed in the background, short videos are foreground by design. They also do not exhibit repeat exposure. Even without explicit feedback, signals such as skips, completions, and replays yield strong implicit labels. Single-item feeds also simplify attribution and reduce confounding compared with multi-item layouts.
Note: The test set will be released after the upcoming challenge.
📊 Basic Statistics • 🧱 Data Description • ⚡ Quick Start • 🧩 Configurable Subsets
Basic Statistics
- Users 10,000,000
- Items 19,627,601
- Unique interactions 40,774,024,903
- Interactions density 0.0208%
- Total watch time: 858,160,100,084 s
- Likes: 1,171,423,458
- Dislikes: 11,860,138
- Shares: 262,734,328
- Bookmarks: 40,124,463
- Clicks on author: 84,632,666
- Comment opens: 481,251,593
Data Description
Privacy-preserving taxonomy — all categorical metadata (user_id
, geo
, item_id
, author_id
, place
, platform
, agent
) is anonymized into stable integer IDs (consistent across splits; no reverse mapping provided).
Interactions
interactions
Each row is one observation (a short video shown to a user) with feedback and context. There are no repeated exposures of the same user–item pair.
Global Temporal Split (GTS): train
/ validation
/ test
preserve time order — train on the past, validate/test on the future.
Chronology: Files are organized by weeks (e.g., week_XX.parquet); rows within each file are in increasing timestamp order.
Field | Type | Description |
---|---|---|
user_id |
uint32 | User identifier |
item_id |
uint32 | Video identifier |
place |
uint8 | Place: feed/search/group/… (24 ids) |
platform |
uint8 | Platform: Android/Web/TV/… (11 ids) |
agent |
uint8 | Agent/client: browser/app (29 ids) |
timespent |
uint8 | Watch time (0–255 seconds) |
like |
boolean | User liked the video |
dislike |
boolean | User disliked the video |
share |
boolean | User shared the video |
bookmark |
boolean | User bookmarked the video |
click_on_author |
boolean | User opened author page |
open_comments |
boolean | User opened the comments section |
Users metadata
Field | Type | Description |
---|---|---|
user_id |
uint32 | User identifier |
age |
uint8 | Age (18-70 years) |
gender |
uint8 | Gender |
geo |
uint8 | Most frequent user location (80 ids) |
train_interactions_rank |
uint32 | Popularity rank for sampling (lower = more interactions) |
Items metadata
Field | Type | Description |
---|---|---|
item_id |
uint32 | Video identifier |
author_id |
uint32 | Author identifier |
duration |
uint8 | Video duration (seconds) |
train_interactions_rank |
uint32 | Popularity rank for sampling (lower = more interactions) |
Embeddings: variable width
Embeddings are trained strictly on content (video/description/audio, etc.) — no collaborative signal mixed in.
Components are ordered: the dot product of the first n components approximates the cosine similarity of the original production embeddings.
This lets researchers pick any dimensionality (1…64) to trade quality for speed and memory.
Field | Type | Description |
---|---|---|
item_id |
uint32 | Video identifier |
embedding |
float16[64] | Item content embedding with ordered components |
Quick Start
Load a small subsample
from huggingface_hub import hf_hub_download
import polars as pl
import numpy as np
subsample_name = 'up0.001_ip0.001'
content_embedding_size = 32
train_interactions_files = [f'subsamples/{subsample_name}/train/week_{i:02}.parquet'
for i in range(25)]
val_interactions_file = [f'subsamples/{subsample_name}/validation/week_25.parquet']
metadata_files = ['metadata/users_metadata.parquet',
'metadata/items_metadata.parquet',
'metadata/item_embeddings.npz']
for file in (train_interactions_files +
val_interactions_file +
metadata_files):
hf_hub_download(
repo_id='deepvk/VK-LSVD', repo_type='dataset',
filename=file, local_dir='VK-LSVD'
)
train_interactions = pl.concat([pl.scan_parquet(f'VK-LSVD/{file}')
for file in train_interactions_files])
train_interactions = train_interactions.collect(engine='streaming')
val_interactions = pl.read_parquet(f'VK-LSVD/{val_interactions_file[0]}')
train_users = train_interactions.select('user_id').unique()
train_items = train_interactions.select('item_id').unique()
item_ids = np.load('VK-LSVD/metadata/item_embeddings.npz')['item_id']
item_embeddings = np.load('VK-LSVD/metadata/item_embeddings.npz')['embedding']
mask = np.isin(item_ids, train_items.to_numpy())
item_ids = item_ids[mask]
item_embeddings = item_embeddings[mask]
item_embeddings = item_embeddings[:, :content_embedding_size]
users_metadata = pl.read_parquet('VK-LSVD/metadata/users_metadata.parquet')
items_metadata = pl.read_parquet('VK-LSVD/metadata/items_metadata.parquet')
users_metadata = users_metadata.join(train_users, on='user_id')
items_metadata = items_metadata.join(train_items, on='item_id')
items_metadata = items_metadata.join(pl.DataFrame({'item_id': item_ids,
'embedding': item_embeddings}),
on='item_id')
Configurable Subsets
We provide several ready-made slices and simple utilities to compose your own subset that matches your task, data budget, and hardware.
You can control density via popularity quantiles (train_interactions_rank
), draw random users,
or pick specific time windows — while preserving the Global Temporal Split.
Representative subsamples are provided for quick experiments:
Subset | Users | Items | Interactions | Density |
---|---|---|---|---|
whole |
10,000,000 | 19,627,601 | 40,774,024,903 | 0.0208% |
ur0.1 |
1,000,000 | 18,701,510 | 4,066,457,259 | 0.0217% |
ur0.01 |
100,000 | 12,467,302 | 407,854,360 | 0.0327% |
ur0.01_ir0.01 |
90,178 | 125,018 | 4,044,900 | 0.0359% |
up0.01_ir0.01 |
100000 | 171106 | 38,404,921 | 0.2245% |
ur0.01_ip0.01 |
99,893 | 196,277 | 191,625,941 | 0.9774% |
up0.01_ip0.01 |
100,000 | 196,277 | 1,417,906,344 | 7.2240% |
up0.001_ip0.001 |
10,000 | 19,628 | 47,976,280 | 24.4428% |
up-0.9_ip-0.9 |
8,939,432 | 17,654,817 | 2,861,937,212 | 0.0018% |
urX
— X fraction of random users (e.g.,ur0.01
= 1% of users).ipX
— X fraction of popular items (bytrain_interactions_rank
)- Negative X denotes the least-popular fraction (e.g.,
−0.9
→ bottom 90%).
For example, to get ur0.01_ip0.01 (1% of random users, 1% of most popular items) use the snippet below.
import polars as pl
def get_sample(entries: pl.DataFrame, split_column: str, fraction: float) -> pl.DataFrame:
if fraction >= 0:
entries = entries.filter(pl.col(split_column) <=
pl.col(split_column).quantile(fraction,
interpolation='midpoint'))
else:
entries = entries.filter(pl.col(split_column) >=
pl.col(split_column).quantile(1 + fraction,
interpolation='midpoint'))
return entries
users = pl.scan_parquet('VK-LSVD/metadata/users_metadata.parquet')
users_sample = get_sample(users, 'user_id', 0.01).select(['user_id'])
items = pl.scan_parquet('VK-LSVD/metadata/items_metadata.parquet')
items_sample = get_sample(items, 'train_interactions_rank', 0.01).select(['item_id'])
interactions = pl.scan_parquet('VK-LSVD/interactions/validation/week_25.parquet')
interactions = interactions.join(users_sample, on='user_id', maintain_order='left')
interactions = interactions.join(items_sample, on='item_id', maintain_order='left')
interactions_sample = interactions.collect(engine='streaming')
To get up-0.9_ip-0.9 (90% of least popular users, 90% of least popular items) replace users and items sampling lines with
users_sample = get_sample(users, 'train_interactions_rank', -0.9).select(['user_id'])
items_sample = get_sample(items, 'train_interactions_rank', -0.9).select(['item_id'])
- Downloads last month
- 936