Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
user_id
uint32
item_id
uint32
place
uint8
platform
uint8
agent
uint8
timespent
uint8
like
bool
dislike
bool
share
bool
bookmark
bool
click_on_author
bool
open_comments
bool
5,470,747
414,687,932
0
1
1
38
false
false
false
false
false
false
448,331,816
353,509,534
0
0
0
51
false
false
false
false
false
false
466,185,997
600,829,563
1
1
1
33
false
false
false
false
false
false
339,696,933
148,499,563
0
0
0
3
false
false
false
false
false
false
502,079,659
478,004,276
0
0
0
2
false
false
false
false
false
false
397,469,627
448,856,419
4
1
1
2
false
false
false
false
false
false
189,076,271
174,758,905
1
1
1
1
false
false
false
false
false
false
309,578,801
356,679,574
0
0
0
67
false
false
false
false
false
true
263,600,275
572,129,294
1
0
0
9
false
false
false
false
false
false
35,622,850
89,910,920
0
0
0
18
false
false
false
false
false
false
384,450,902
69,905,978
0
1
1
1
false
false
false
false
false
false
260,561,403
232,686,378
0
1
1
3
false
false
false
false
false
false
89,800,020
358,439,180
1
1
1
5
false
false
false
false
false
false
113,239,860
224,595,037
2
0
0
5
false
false
false
false
false
false
266,185,993
221,938,893
0
0
0
1
false
false
false
false
false
false
423,232,336
49,047,567
1
0
0
11
false
false
false
false
false
false
215,819,302
436,222,820
0
0
0
28
true
false
false
false
false
false
341,866,343
517,623,261
1
1
1
3
false
false
false
false
false
false
351,582,550
408,710,727
0
1
1
3
false
false
false
false
false
false
441,854,058
220,158,920
1
1
1
5
false
false
false
false
false
false
317,397,614
415,666,341
4
1
1
38
false
false
false
false
false
false
440,371,970
526,531,201
1
0
0
24
false
false
false
false
false
false
424,525,127
211,909,844
0
0
0
47
false
false
false
false
false
false
12,462,495
70,558,648
0
1
1
54
false
false
false
false
false
false
491,375,129
110,684,246
1
1
1
2
false
false
false
false
false
false
184,586,616
452,484,244
0
1
1
1
false
false
false
false
false
false
501,442,989
519,440,183
1
1
1
32
false
false
false
false
false
false
160,943,996
311,630,993
0
0
0
17
false
false
false
false
false
false
466,000,871
232,895,881
1
0
0
3
false
false
false
false
false
false
98,459,011
582,753,113
1
1
1
1
true
false
false
false
false
false
43,937,347
536,742,687
0
1
1
7
false
false
false
false
false
false
217,101,110
376,703,007
1
0
0
4
false
false
false
false
false
false
480,007,226
133,349,414
0
0
0
4
false
false
false
false
false
false
128,921,856
397,979,425
1
1
1
7
false
false
false
false
false
false
246,919,163
35,086,492
0
0
0
28
false
false
false
false
false
false
345,740,257
542,451,410
1
1
1
3
false
false
false
false
false
false
170,981,674
227,660,597
1
0
0
4
false
false
false
false
false
false
34,301,714
6,835,107
1
0
0
16
false
false
false
false
false
false
415,510,988
355,403,363
1
1
1
23
false
false
false
false
false
false
430,631,249
333,704,761
1
0
0
7
true
false
false
false
false
false
49,518,175
43,170,146
1
1
1
1
false
false
false
false
false
false
355,713,901
567,289,653
0
1
1
16
false
false
false
false
false
false
17,078,694
446,991,761
0
1
1
33
false
false
false
false
false
false
180,860,992
331,089,783
0
0
0
5
false
false
false
false
false
false
65,218,218
185,839,034
0
0
0
4
false
false
false
false
false
false
383,410,220
586,449,195
0
1
1
2
false
false
false
false
false
false
96,305,698
407,717,497
1
1
1
61
false
false
false
false
false
false
394,924,434
454,133,051
0
0
0
2
false
false
false
false
false
false
305,679,960
314,983,465
6
0
0
1
false
false
false
false
false
false
53,365,995
374,702,848
1
1
1
23
false
false
false
false
false
true
157,464,662
282,752,903
6
0
0
1
false
false
false
false
false
false
307,336,358
105,968,011
0
1
1
2
false
false
false
false
false
false
332,495,472
576,618,296
1
3
1
7
false
false
false
false
false
false
236,457,820
179,513,218
1
1
1
111
false
false
false
false
false
true
176,116,456
445,552,206
1
1
1
4
false
false
false
false
false
false
360,215,224
435,305,261
0
0
0
1
false
false
false
false
false
false
339,604,227
77,720,756
0
0
0
12
true
false
false
false
false
false
374,119,407
17,704,233
0
0
0
6
false
false
false
false
false
false
456,422,641
69,905,978
0
0
0
1
false
false
false
false
false
false
168,402,063
55,581,238
3
1
1
35
false
false
false
false
false
false
107,882,212
597,448,950
0
1
1
50
false
false
false
false
false
false
177,172,684
279,914,616
1
1
1
64
false
false
false
false
false
false
383,258,838
337,728,229
0
1
1
2
false
false
false
false
false
false
375,413,059
267,727,527
1
0
0
24
true
false
false
true
false
false
316,272,346
575,116,147
1
1
1
9
false
false
false
false
false
false
220,691,194
415,145,912
1
0
0
37
false
false
false
false
false
false
294,419,880
478,257,777
1
0
0
15
false
false
false
false
false
false
88,212,493
483,374,919
1
2
2
15
false
false
false
false
false
false
136,881,224
109,431,567
1
1
1
108
false
false
false
false
false
false
192,421,268
497,297,832
1
1
1
42
false
false
false
false
false
false
70,250,220
120,553,892
0
0
0
2
false
false
false
false
false
false
164,558,305
407,460,235
0
0
0
1
false
false
false
false
false
false
66,600,863
599,124,881
1
1
1
8
false
false
false
false
false
false
15,758,567
445,552,206
0
1
1
1
false
false
false
false
false
false
426,358,459
103,295,189
1
1
1
1
false
false
false
false
false
false
465,817,485
298,389,988
0
1
1
2
false
false
false
false
false
false
337,603,762
13,222,064
0
0
0
29
false
false
false
false
false
false
247,673,417
138,745,412
0
0
0
89
false
false
false
false
false
false
92,361,758
86,493,726
1
1
1
255
false
false
false
false
false
false
459,938,731
595,687,795
1
1
1
38
false
false
false
false
false
false
42,816,821
404,801,443
1
1
1
8
false
false
false
false
false
false
47,937,150
324,297,268
1
0
0
255
false
false
false
false
false
false
31,695,891
461,923,579
1
1
1
86
true
false
false
false
false
true
430,257,489
332,348,866
1
1
1
47
false
false
false
false
false
false
123,833,165
242,603,493
1
1
1
2
false
false
false
false
false
false
224,977,481
463,830,959
2
0
0
41
false
false
false
false
false
false
290,881,677
175,617,916
0
0
0
4
false
false
false
false
false
false
100,596,649
189,439,483
1
0
0
8
false
false
false
false
false
false
11,933,445
59,445,167
1
1
1
3
false
false
false
false
false
false
82,720,987
143,222,291
0
1
1
26
false
false
false
false
false
false
324,254,860
550,708,089
1
1
1
18
false
false
false
false
false
false
472,173,042
533,133,485
3
0
0
39
false
false
false
false
false
true
429,356,030
594,385,074
0
0
0
3
false
false
false
false
false
false
37,758,362
348,654,597
0
1
1
3
false
false
false
false
false
false
120,297,105
239,019,781
0
0
0
71
false
false
false
false
false
false
123,097,641
521,798,630
1
1
1
142
false
false
false
false
false
false
129,181,313
72,303,206
1
0
0
57
false
false
false
false
false
false
156,070,850
259,959,114
1
1
1
46
false
false
false
false
false
false
185,558,623
171,643,760
1
0
0
50
false
false
false
false
false
false
14,064,745
20,327,222
1
1
1
41
false
false
false
false
false
false
End of preview. Expand in Data Studio

VK-LSVD: Large Short-Video Dataset

VK-LSVD is the largest open industrial short-video recommendation dataset with real-world interactions:

  • 40B unique user–item interactions with rich feedback (timespent, like, dislike, share, bookmark, click_on_author, open_comments) and context (place, platform, agent);
  • 10M users (with age, gender, geo);
  • 20M short videos (with duration, author_id, content embedding);
  • Global Temporal Ordering across six consecutive months of user interactions.

Why short video? Users often watch dozens of clips per session, producing dense, time-ordered signals well suited for modeling. Unlike music, podcasts, or long-form video, which are often consumed in the background, short videos are foreground by design. They also do not exhibit repeat exposure. Even without explicit feedback, signals such as skips, completions, and replays yield strong implicit labels. Single-item feeds also simplify attribution and reduce confounding compared with multi-item layouts.


Note: The test set will be released after the upcoming challenge.


📊 Basic Statistics🧱 Data Description⚡ Quick Start🧩 Configurable Subsets


Basic Statistics

  • Users 10,000,000
  • Items 19,627,601
  • Unique interactions 40,774,024,903
  • Interactions density 0.0208%
  • Total watch time: 858,160,100,084 s
  • Likes: 1,171,423,458
  • Dislikes: 11,860,138
  • Shares: 262,734,328
  • Bookmarks: 40,124,463
  • Clicks on author: 84,632,666
  • Comment opens: 481,251,593

Data Description

Privacy-preserving taxonomy — all categorical metadata (user_id, geo, item_id, author_id, place, platform, agent) is anonymized into stable integer IDs (consistent across splits; no reverse mapping provided).

Interactions

interactions
Each row is one observation (a short video shown to a user) with feedback and context. There are no repeated exposures of the same user–item pair.
Global Temporal Split (GTS): train / validation / test preserve time order — train on the past, validate/test on the future.
Chronology: Files are organized by weeks (e.g., week_XX.parquet); rows within each file are in increasing timestamp order.

Field Type Description
user_id uint32 User identifier
item_id uint32 Video identifier
place uint8 Place: feed/search/group/… (24 ids)
platform uint8 Platform: Android/Web/TV/… (11 ids)
agent uint8 Agent/client: browser/app (29 ids)
timespent uint8 Watch time (0–255 seconds)
like boolean User liked the video
dislike boolean User disliked the video
share boolean User shared the video
bookmark boolean User bookmarked the video
click_on_author boolean User opened author page
open_comments boolean User opened the comments section

Users metadata

users_metadata.parquet

Field Type Description
user_id uint32 User identifier
age uint8 Age (18-70 years)
gender uint8 Gender
geo uint8 Most frequent user location (80 ids)
train_interactions_rank uint32 Popularity rank for sampling (lower = more interactions)

Items metadata

items_metadata.parquet

Field Type Description
item_id uint32 Video identifier
author_id uint32 Author identifier
duration uint8 Video duration (seconds)
train_interactions_rank uint32 Popularity rank for sampling (lower = more interactions)

Embeddings: variable width

Embeddings are trained strictly on content (video/description/audio, etc.) — no collaborative signal mixed in.
Components are ordered: the dot product of the first n components approximates the cosine similarity of the original production embeddings.
This lets researchers pick any dimensionality (1…64) to trade quality for speed and memory.

item_embeddings.npz

Field Type Description
item_id uint32 Video identifier
embedding float16[64] Item content embedding with ordered components

Quick Start

Load a small subsample

from huggingface_hub import hf_hub_download
import polars as pl
import numpy as np

subsample_name = 'up0.001_ip0.001'
content_embedding_size = 32

train_interactions_files = [f'subsamples/{subsample_name}/train/week_{i:02}.parquet'
                            for i in range(25)]
val_interactions_file = [f'subsamples/{subsample_name}/validation/week_25.parquet']

metadata_files = ['metadata/users_metadata.parquet',
                  'metadata/items_metadata.parquet',
                  'metadata/item_embeddings.npz']

for file in (train_interactions_files +
             val_interactions_file +
             metadata_files):
    hf_hub_download(
        repo_id='deepvk/VK-LSVD', repo_type='dataset',
        filename=file, local_dir='VK-LSVD'
    )

train_interactions = pl.concat([pl.scan_parquet(f'VK-LSVD/{file}')
                                for file in train_interactions_files])
train_interactions = train_interactions.collect(engine='streaming')

val_interactions = pl.read_parquet(f'VK-LSVD/{val_interactions_file[0]}')

train_users = train_interactions.select('user_id').unique()
train_items = train_interactions.select('item_id').unique()

item_ids = np.load('VK-LSVD/metadata/item_embeddings.npz')['item_id']
item_embeddings = np.load('VK-LSVD/metadata/item_embeddings.npz')['embedding']

mask = np.isin(item_ids, train_items.to_numpy())
item_ids = item_ids[mask]
item_embeddings = item_embeddings[mask]
item_embeddings = item_embeddings[:, :content_embedding_size]

users_metadata = pl.read_parquet('VK-LSVD/metadata/users_metadata.parquet')
items_metadata = pl.read_parquet('VK-LSVD/metadata/items_metadata.parquet')

users_metadata = users_metadata.join(train_users, on='user_id')
items_metadata = items_metadata.join(train_items, on='item_id')
items_metadata = items_metadata.join(pl.DataFrame({'item_id': item_ids, 
                                                   'embedding': item_embeddings}), 
                                     on='item_id')

Configurable Subsets

We provide several ready-made slices and simple utilities to compose your own subset that matches your task, data budget, and hardware. You can control density via popularity quantiles (train_interactions_rank), draw random users, or pick specific time windows — while preserving the Global Temporal Split.

Representative subsamples are provided for quick experiments:

Subset Users Items Interactions Density
whole 10,000,000 19,627,601 40,774,024,903 0.0208%
ur0.1 1,000,000 18,701,510 4,066,457,259 0.0217%
ur0.01 100,000 12,467,302 407,854,360 0.0327%
ur0.01_ir0.01 90,178 125,018 4,044,900 0.0359%
up0.01_ir0.01 100000 171106 38,404,921 0.2245%
ur0.01_ip0.01 99,893 196,277 191,625,941 0.9774%
up0.01_ip0.01 100,000 196,277 1,417,906,344 7.2240%
up0.001_ip0.001 10,000 19,628 47,976,280 24.4428%
up-0.9_ip-0.9 8,939,432 17,654,817 2,861,937,212 0.0018%
  • urX — X fraction of random users (e.g., ur0.01 = 1% of users).
  • ipX — X fraction of popular items (by train_interactions_rank)
  • Negative X denotes the least-popular fraction (e.g., −0.9 → bottom 90%).

For example, to get ur0.01_ip0.01 (1% of random users, 1% of most popular items) use the snippet below.

import polars as pl

def get_sample(entries: pl.DataFrame, split_column: str, fraction: float) -> pl.DataFrame:
    if fraction >= 0:
        entries = entries.filter(pl.col(split_column) <= 
                                 pl.col(split_column).quantile(fraction, 
                                                               interpolation='midpoint'))
    else:
        entries = entries.filter(pl.col(split_column) >= 
                                 pl.col(split_column).quantile(1 + fraction, 
                                                               interpolation='midpoint'))
    return entries

users = pl.scan_parquet('VK-LSVD/metadata/users_metadata.parquet')
users_sample = get_sample(users, 'user_id', 0.01).select(['user_id'])

items = pl.scan_parquet('VK-LSVD/metadata/items_metadata.parquet')
items_sample = get_sample(items, 'train_interactions_rank', 0.01).select(['item_id'])

interactions = pl.scan_parquet('VK-LSVD/interactions/validation/week_25.parquet')
interactions = interactions.join(users_sample, on='user_id', maintain_order='left')
interactions = interactions.join(items_sample, on='item_id', maintain_order='left')

interactions_sample = interactions.collect(engine='streaming')

To get up-0.9_ip-0.9 (90% of least popular users, 90% of least popular items) replace users and items sampling lines with

users_sample = get_sample(users, 'train_interactions_rank', -0.9).select(['user_id'])
items_sample = get_sample(items, 'train_interactions_rank', -0.9).select(['item_id'])
Downloads last month
936