File size: 9,939 Bytes
833d272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc1e481
833d272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258ad63
 
833d272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d978840
833d272
 
 
 
 
 
d978840
833d272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
---
license: apache-2.0
task_categories:
- tabular-classification
- tabular-regression
- graph-ml
# - recommendation
# - retrieval
# - ranking
# - user-modeling
- other
tags:
- recommendation
- recsys
- short-video
- clips
- retrieval
- ranking
- user-modeling
- industrial
- real-world
size_categories:
- 10B<n<100B
language:
  - en
pretty_name: VK-LSVD
---


# VK-LSVD: Large Short-Video Dataset
**VK-LSVD** is the largest open industrial short-video recommendation dataset with real-world interactions: 
- **40B** unique user–item interactions with rich feedback (`timespent`, `like`, `dislike`, `share`, `bookmark`, `click_on_author`, `open_comments`) and
context (`place`, `platform`, `agent`);
- **10M** users (with `age`, `gender`, `geo`);
- **20M** short videos (with `duration`, `author_id`, content `embedding`);
- **Global Temporal Ordering** across **six consecutive months** of user interactions.

**Why short video?** Users often watch dozens of clips per session, producing dense, time-ordered signals well suited for modeling. 
Unlike music, podcasts, or long-form video, which are often consumed in the background, short videos are foreground by design. They also do not exhibit repeat exposure.
Even without explicit feedback, signals such as skips, completions, and replays yield strong implicit labels. 
Single-item feeds also simplify attribution and reduce confounding compared with multi-item layouts. 


---

> **Note:** The test set will be released after the upcoming challenge.
  
---

[📊 Basic Statistics](#basic-statistics) • [🧱 Data Description](#data-description) • [⚡ Quick Start](#quick-start) • [🧩 Configurable Subsets](#configurable-subsets)

---

## Basic Statistics
- Users **10,000,000**
- Items **19,627,601**
- Unique interactions **40,774,024,903**
- Interactions density **0.0208%**
- Total watch time: **858,160,100,084 s**
- Likes: **1,171,423,458**
- Dislikes: **11,860,138**
- Shares: **262,734,328**
- Bookmarks: **40,124,463**
- Clicks on author: **84,632,666**
- Comment opens: **481,251,593**

---

## Data Description
**Privacy-preserving taxonomy** — all categorical metadata (`user_id`, `geo`, `item_id`, `author_id`, `place`, `platform`, `agent`) is anonymized into stable integer IDs (consistent across splits; no reverse mapping provided).

### Interactions 
[interactions](https://huggingface.co/datasets/deepvk/VK-LSVD/tree/main/interactions)   
Each row is one observation (a short video shown to a user) with feedback and context. There are no repeated exposures of the same user–item pair.  
**Global Temporal Split (GTS):** `train` / `validation` / `test` preserve time order — train on the past, validate/test on the future.  
**Chronology:** Files are organized by weeks (e.g., week_XX.parquet); rows within each file are in increasing timestamp order. 

| Field | Type | Description |
|-----|----|-----------|
|`user_id`|uint32|User identifier|
|`item_id`|uint32|Video identifier|
|`place`|uint8|Place: feed/search/group/… (24 ids)|
|`platform`|uint8|Platform: Android/Web/TV/… (11 ids) |
|`agent`|uint8|Agent/client: browser/app (29 ids)|
|`timespent`|uint8|Watch time (0–255 seconds)|
|`like`|boolean|User liked the video|
|`dislike`|boolean|User disliked the video|
|`share`|boolean|User shared the video|
|`bookmark`|boolean|User bookmarked the video|
|`click_on_author`|boolean|User opened author page|
|`open_comments`|boolean|User opened the comments section |

### Users metadata 
[users_metadata.parquet](metadata/users_metadata.parquet)
| Field | Type | Description |
|-----|----|-----------|
|`user_id`|uint32|User identifier|
|`age`|uint8|Age (18-70 years)|
|`gender`|uint8|Gender|
|`geo`|uint8|Most frequent user location (80 ids)|
|`train_interactions_rank`|uint32|Popularity rank for sampling (lower = more interactions)|

### Items metadata 
[items_metadata.parquet](metadata/items_metadata.parquet)

| Field | Type | Description |
|-----|----|-----------|
|`item_id`|uint32|Video identifier|
|`author_id`|uint32|Author identifier|
|`duration`|uint8|Video duration (seconds)|
|`train_interactions_rank`|uint32|Popularity rank for sampling (lower = more interactions)|

### Embeddings: variable width
**Embeddings are trained strictly on content** (video/description/audio, etc.) — no collaborative signal mixed in.  
**Components are ordered**: the _dot product_ of the first n components approximates the _cosine_ similarity of the original production embeddings.  
This lets researchers pick any dimensionality (**1…64**) to trade quality for speed and memory.

  
[item_embeddings.npz](metadata/item_embeddings.npz)   

| Field | Type | Description |
|-----|----|-----------|
|`item_id`|uint32|Video identifier|
|`embedding`|float16[64]|Item content embedding with ordered components|

---

## Quick Start 


### Load a small subsample


```python
from huggingface_hub import hf_hub_download
import polars as pl
import numpy as np

subsample_name = 'up0.001_ip0.001'
content_embedding_size = 32

train_interactions_files = [f'subsamples/{subsample_name}/train/week_{i:02}.parquet'
                            for i in range(25)]
val_interactions_file = [f'subsamples/{subsample_name}/validation/week_25.parquet']

metadata_files = ['metadata/users_metadata.parquet',
                  'metadata/items_metadata.parquet',
                  'metadata/item_embeddings.npz']

for file in (train_interactions_files +
             val_interactions_file +
             metadata_files):
    hf_hub_download(
        repo_id='deepvk/VK-LSVD', repo_type='dataset',
        filename=file, local_dir='VK-LSVD'
    )

train_interactions = pl.concat([pl.scan_parquet(f'VK-LSVD/{file}')
                                for file in train_interactions_files])
train_interactions = train_interactions.collect(engine='streaming')

val_interactions = pl.read_parquet(f'VK-LSVD/{val_interactions_file[0]}')

train_users = train_interactions.select('user_id').unique()
train_items = train_interactions.select('item_id').unique()

item_ids = np.load('VK-LSVD/metadata/item_embeddings.npz')['item_id']
item_embeddings = np.load('VK-LSVD/metadata/item_embeddings.npz')['embedding']

mask = np.isin(item_ids, train_items.to_numpy())
item_ids = item_ids[mask]
item_embeddings = item_embeddings[mask]
item_embeddings = item_embeddings[:, :content_embedding_size]

users_metadata = pl.read_parquet('VK-LSVD/metadata/users_metadata.parquet')
items_metadata = pl.read_parquet('VK-LSVD/metadata/items_metadata.parquet')

users_metadata = users_metadata.join(train_users, on='user_id')
items_metadata = items_metadata.join(train_items, on='item_id')
items_metadata = items_metadata.join(pl.DataFrame({'item_id': item_ids, 
                                                   'embedding': item_embeddings}), 
                                     on='item_id')
```


---


## Configurable Subsets

We provide several ready-made slices and simple utilities to compose your own subset that matches your task, data budget, and hardware. 
You can control density via popularity quantiles (`train_interactions_rank`), draw random users,
or pick specific time windows — while preserving the Global Temporal Split.

Representative subsamples are provided for quick experiments:

| Subset | Users | Items | Interactions | Density |
|-----|----:|-----------:|-----------:|-----------:|
|`whole`|10,000,000|19,627,601|40,774,024,903|0.0208%|
|`ur0.1`|1,000,000|18,701,510|4,066,457,259|0.0217%|
|`ur0.01`|100,000|12,467,302|407,854,360|0.0327%|
|`ur0.01_ir0.01`|90,178|125,018|4,044,900|0.0359%|
|`up0.01_ir0.01`|100000|171106|38,404,921|0.2245%|
|`ur0.01_ip0.01`|99,893|196,277|191,625,941|0.9774%|
|`up0.01_ip0.01`|100,000|196,277|1,417,906,344|7.2240%|
|`up0.001_ip0.001`|10,000|19,628|47,976,280|24.4428%|
|`up-0.9_ip-0.9`|8,939,432|17,654,817|2,861,937,212|0.0018%|



- `urX` — X fraction of **r**andom **u**sers (e.g., `ur0.01` = 1% of users).
- `ipX` — X fraction of **p**opular **i**tems (by `train_interactions_rank`)  
- Negative X denotes the least-popular fraction (e.g., `−0.9` → bottom 90%).


For example, to get [ur0.01_ip0.01](https://huggingface.co/datasets/deepvk/VK-LSVD/tree/main/subsamples/ur0.01_ip0.01) (1% of **r**andom **u**sers, 1% of most **p**opular **i**tems) use the snippet below.
```python
import polars as pl

def get_sample(entries: pl.DataFrame, split_column: str, fraction: float) -> pl.DataFrame:
    if fraction >= 0:
        entries = entries.filter(pl.col(split_column) <= 
                                 pl.col(split_column).quantile(fraction, 
                                                               interpolation='midpoint'))
    else:
        entries = entries.filter(pl.col(split_column) >= 
                                 pl.col(split_column).quantile(1 + fraction, 
                                                               interpolation='midpoint'))
    return entries

users = pl.scan_parquet('VK-LSVD/metadata/users_metadata.parquet')
users_sample = get_sample(users, 'user_id', 0.01).select(['user_id'])

items = pl.scan_parquet('VK-LSVD/metadata/items_metadata.parquet')
items_sample = get_sample(items, 'train_interactions_rank', 0.01).select(['item_id'])

interactions = pl.scan_parquet('VK-LSVD/interactions/validation/week_25.parquet')
interactions = interactions.join(users_sample, on='user_id', maintain_order='left')
interactions = interactions.join(items_sample, on='item_id', maintain_order='left')

interactions_sample = interactions.collect(engine='streaming')
```

To get [up-0.9_ip-0.9](https://huggingface.co/datasets/deepvk/VK-LSVD/tree/main/subsamples/up-0.9_ip-0.9) (90% of least **p**opular **u**sers, 90% of least **p**opular **i**tems) replace users and items sampling lines with 
```python
users_sample = get_sample(users, 'train_interactions_rank', -0.9).select(['user_id'])
items_sample = get_sample(items, 'train_interactions_rank', -0.9).select(['item_id'])
```