|
--- |
|
task_categories: |
|
- image-classification |
|
--- |
|
# EuroSAT |
|
**EuroSAT** is a benchmark dataset for land use and land cover classification based on Sentinel-2 satellite imagery. It contains 27,000 labeled images covering 10 classes (e.g., agricultural, residential, industrial, and forest areas). The dataset features multi-spectral bands with a spatial resolution of 10 meters per pixel and an image resolution of 64 × 64 pixels. |
|
|
|
## How to Use This Dataset |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("GFM-Bench/EuroSAT") |
|
``` |
|
|
|
Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗 |
|
|
|
## Dataset Metadata |
|
|
|
The following metadata provides details about the Sentinel-2 imagery used in the dataset: |
|
- **Number of Sentinel-2 Bands**: 13 |
|
- **Sentinel-2 Bands**: B01 (**Coastal aerosol**), B02 (**Blue**), B03 (**Green**), B04 (**Red**), B05 (**Vegetation red edge**), B06 (**Vegetation red edge**), B07 (**Vegetation red edge**), B08 (**NIR**), B8A (**Narrow NIR**), B09 (**Water vapour**), B10 (**SWIR – Cirrus**), B11 (**SWIR**), B12 (**SWIR**) |
|
- **Image Resolution**: 64 x 64 pixels |
|
- **Spatial Resolution**: 10 meters |
|
- **Number of Classes**: 10 |
|
- **Class Labels**: Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial Buildings, Pasture, Permanent Crop, Residential Buildings, River, SeaLake |
|
|
|
## Dataset Splits |
|
The **EuroSAT** dataset consists following splits: |
|
- **train**: 16200 samples |
|
- **val**: 5400 samples |
|
- **test**: 5400 samples |
|
|
|
## Dataset Features: |
|
The **EuroSAT** dataset consists of following features: |
|
- **optical**: the Sentinel-2 image. |
|
- **label**: the classification label. |
|
- **optical_channel_wv**: the central wavelength of each optical channel. |
|
- **spatial_resolution**: the spatial resolution of images. |
|
## Citation |
|
If you use the EuroSAT dataset in your work, please cite original papers: |
|
``` |
|
@article{helber2019eurosat, |
|
title={Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification}, |
|
author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian}, |
|
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, |
|
volume={12}, |
|
number={7}, |
|
pages={2217--2226}, |
|
year={2019}, |
|
publisher={IEEE} |
|
} |
|
``` |
|
and |
|
``` |
|
@inproceedings{helber2018introducing, |
|
title={Introducing EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification}, |
|
author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian}, |
|
booktitle={IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium}, |
|
pages={204--207}, |
|
year={2018}, |
|
organization={IEEE} |
|
} |
|
``` |