--- task_categories: - image-classification --- # EuroSAT **EuroSAT** is a benchmark dataset for land use and land cover classification based on Sentinel-2 satellite imagery. It contains 27,000 labeled images covering 10 classes (e.g., agricultural, residential, industrial, and forest areas). The dataset features multi-spectral bands with a spatial resolution of 10 meters per pixel and an image resolution of 64 × 64 pixels. ## How to Use This Dataset ```python from datasets import load_dataset dataset = load_dataset("GFM-Bench/EuroSAT") ``` Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗 ## Dataset Metadata The following metadata provides details about the Sentinel-2 imagery used in the dataset: - **Number of Sentinel-2 Bands**: 13 - **Sentinel-2 Bands**: B01 (**Coastal aerosol**), B02 (**Blue**), B03 (**Green**), B04 (**Red**), B05 (**Vegetation red edge**), B06 (**Vegetation red edge**), B07 (**Vegetation red edge**), B08 (**NIR**), B8A (**Narrow NIR**), B09 (**Water vapour**), B10 (**SWIR – Cirrus**), B11 (**SWIR**), B12 (**SWIR**) - **Image Resolution**: 64 x 64 pixels - **Spatial Resolution**: 10 meters - **Number of Classes**: 10 - **Class Labels**: Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial Buildings, Pasture, Permanent Crop, Residential Buildings, River, SeaLake ## Dataset Splits The **EuroSAT** dataset consists following splits: - **train**: 16200 samples - **val**: 5400 samples - **test**: 5400 samples ## Dataset Features: The **EuroSAT** dataset consists of following features: - **optical**: the Sentinel-2 image. - **label**: the classification label. - **optical_channel_wv**: the central wavelength of each optical channel. - **spatial_resolution**: the spatial resolution of images. ## Citation If you use the EuroSAT dataset in your work, please cite original papers: ``` @article{helber2019eurosat, title={Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification}, author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian}, journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, volume={12}, number={7}, pages={2217--2226}, year={2019}, publisher={IEEE} } ``` and ``` @inproceedings{helber2018introducing, title={Introducing EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification}, author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian}, booktitle={IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium}, pages={204--207}, year={2018}, organization={IEEE} } ```