Update README.md
Browse files
README.md
CHANGED
@@ -2,57 +2,42 @@
|
|
2 |
task_categories:
|
3 |
- image-classification
|
4 |
---
|
5 |
-
# EuroSAT
|
6 |
-
|
7 |
-
The **EuroSAT** dataset consists of satellite imagery for land use and land cover classification. It contains labeled images of 10 different land cover classes.
|
8 |
-
|
9 |
-
Please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) for more information about how to use the dataset! 🙂
|
10 |
-
|
11 |
-
## Metadata
|
12 |
-
|
13 |
-
The following metadata provides details about the Sentinel-2 imagery used in the dataset:
|
14 |
|
|
|
15 |
```python
|
16 |
-
|
17 |
-
S2_STD = [245.71762908, 333.00778264, 395.09249139, 593.75055589, 566.4170017, 861.18399006, 1086.63139075, 1117.98170791, 404.91978886, 4.77584468, 1002.58768311, 761.30323499, 1231.58581042]
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
"bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B10", "B11", "B12"],
|
22 |
-
"channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4],
|
23 |
-
"mean": S2_MEAN,
|
24 |
-
"std": S2_STD,
|
25 |
-
},
|
26 |
-
"s1": {
|
27 |
-
"bands": None,
|
28 |
-
"channel_wv": None,
|
29 |
-
"mean": None,
|
30 |
-
"std": None
|
31 |
-
}
|
32 |
-
}
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
- **train**: 16200 samples
|
44 |
- **val**: 5400 samples
|
45 |
- **test**: 5400 samples
|
46 |
|
47 |
-
## Features:
|
48 |
The **EuroSAT** dataset consists of following features:
|
49 |
- **optical**: the Sentinel-2 image.
|
50 |
- **label**: the classification label.
|
51 |
-
- **optical_channel_wv**: the wavelength of each optical channel.
|
52 |
- **spatial_resolution**: the spatial resolution of images.
|
53 |
-
|
54 |
## Citation
|
55 |
-
If you use the EuroSAT dataset in your work, please cite
|
56 |
```
|
57 |
@article{helber2019eurosat,
|
58 |
title={Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification},
|
@@ -64,4 +49,15 @@ If you use the EuroSAT dataset in your work, please cite the original paper:
|
|
64 |
year={2019},
|
65 |
publisher={IEEE}
|
66 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
```
|
|
|
2 |
task_categories:
|
3 |
- image-classification
|
4 |
---
|
5 |
+
# EuroSAT
|
6 |
+
**EuroSAT** is a benchmark dataset for land use and land cover classification based on Sentinel-2 satellite imagery. It contains 27,000 labeled images covering 10 classes (e.g., agricultural, residential, industrial, and forest areas). The dataset features multi-spectral bands with a spatial resolution of 10 meters per pixel and an image resolution of 64 × 64 pixels.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
## How to Use This Dataset
|
9 |
```python
|
10 |
+
from datasets import load_dataset
|
|
|
11 |
|
12 |
+
dataset = load_dataset("GFM-Bench/EuroSAT")
|
13 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗
|
16 |
|
17 |
+
## Dataset Metadata
|
18 |
|
19 |
+
The following metadata provides details about the Sentinel-2 imagery used in the dataset:
|
20 |
+
- **Number of Sentinel-2 Bands**: 13
|
21 |
+
- **Sentinel-2 Bands**: B01 (**Coastal aerosol**), B02 (**Blue**), B03 (**Green**), B04 (**Red**), B05 (**Vegetation red edge**), B06 (**Vegetation red edge**), B07 (**Vegetation red edge**), B08 (**NIR**), B8A (**Narrow NIR**), B09 (**Water vapour**), B10 (**SWIR – Cirrus**), B11 (**SWIR**), B12 (**SWIR**)
|
22 |
+
- **Image Resolution**: 64 x 64 pixels
|
23 |
+
- **Spatial Resolution**: 10 meters
|
24 |
+
- **Number of Classes**: 10
|
25 |
+
- **Class Labels**: Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial Buildings, Pasture, Permanent Crop, Residential Buildings, River, SeaLake
|
26 |
+
|
27 |
+
## Dataset Splits
|
28 |
+
The **EuroSAT** dataset consists following splits:
|
29 |
- **train**: 16200 samples
|
30 |
- **val**: 5400 samples
|
31 |
- **test**: 5400 samples
|
32 |
|
33 |
+
## Dataset Features:
|
34 |
The **EuroSAT** dataset consists of following features:
|
35 |
- **optical**: the Sentinel-2 image.
|
36 |
- **label**: the classification label.
|
37 |
+
- **optical_channel_wv**: the central wavelength of each optical channel.
|
38 |
- **spatial_resolution**: the spatial resolution of images.
|
|
|
39 |
## Citation
|
40 |
+
If you use the EuroSAT dataset in your work, please cite original papers:
|
41 |
```
|
42 |
@article{helber2019eurosat,
|
43 |
title={Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification},
|
|
|
49 |
year={2019},
|
50 |
publisher={IEEE}
|
51 |
}
|
52 |
+
```
|
53 |
+
and
|
54 |
+
```
|
55 |
+
@inproceedings{helber2018introducing,
|
56 |
+
title={Introducing EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification},
|
57 |
+
author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian},
|
58 |
+
booktitle={IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium},
|
59 |
+
pages={204--207},
|
60 |
+
year={2018},
|
61 |
+
organization={IEEE}
|
62 |
+
}
|
63 |
```
|