deberta_energie / README.md
Ludo33's picture
End of training
8904a2b verified
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: deberta_Energie
    results: []

deberta_Energie

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0142
  • Accuracy: 0.9913
  • F1: 0.9913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.4003 1.0 116 0.9262 0.6524 0.6025
0.7697 2.0 232 0.3836 0.8906 0.8899
0.3904 3.0 348 0.2468 0.9256 0.9191
0.2749 4.0 464 0.2202 0.9324 0.9283
0.2043 5.0 580 0.1122 0.9672 0.9673
0.1808 6.0 696 0.1004 0.9701 0.9706
0.1274 7.0 812 0.0822 0.9745 0.9747
0.1018 8.0 928 0.0673 0.9791 0.9794
0.0711 9.0 1044 0.0457 0.9870 0.9870
0.0609 10.0 1160 0.0370 0.9867 0.9867
0.0594 11.0 1276 0.0240 0.9886 0.9886
0.0332 12.0 1392 0.0182 0.9913 0.9913
0.0278 13.0 1508 0.0183 0.9908 0.9908
0.0281 14.0 1624 0.0142 0.9913 0.9913

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0