End of training
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: microsoft/deberta-v3-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: deberta_Energie
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# deberta_Energie
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0142
|
23 |
+
- Accuracy: 0.9913
|
24 |
+
- F1: 0.9913
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 30
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
56 |
+
| 1.4003 | 1.0 | 116 | 0.9262 | 0.6524 | 0.6025 |
|
57 |
+
| 0.7697 | 2.0 | 232 | 0.3836 | 0.8906 | 0.8899 |
|
58 |
+
| 0.3904 | 3.0 | 348 | 0.2468 | 0.9256 | 0.9191 |
|
59 |
+
| 0.2749 | 4.0 | 464 | 0.2202 | 0.9324 | 0.9283 |
|
60 |
+
| 0.2043 | 5.0 | 580 | 0.1122 | 0.9672 | 0.9673 |
|
61 |
+
| 0.1808 | 6.0 | 696 | 0.1004 | 0.9701 | 0.9706 |
|
62 |
+
| 0.1274 | 7.0 | 812 | 0.0822 | 0.9745 | 0.9747 |
|
63 |
+
| 0.1018 | 8.0 | 928 | 0.0673 | 0.9791 | 0.9794 |
|
64 |
+
| 0.0711 | 9.0 | 1044 | 0.0457 | 0.9870 | 0.9870 |
|
65 |
+
| 0.0609 | 10.0 | 1160 | 0.0370 | 0.9867 | 0.9867 |
|
66 |
+
| 0.0594 | 11.0 | 1276 | 0.0240 | 0.9886 | 0.9886 |
|
67 |
+
| 0.0332 | 12.0 | 1392 | 0.0182 | 0.9913 | 0.9913 |
|
68 |
+
| 0.0278 | 13.0 | 1508 | 0.0183 | 0.9908 | 0.9908 |
|
69 |
+
| 0.0281 | 14.0 | 1624 | 0.0142 | 0.9913 | 0.9913 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.48.3
|
75 |
+
- Pytorch 2.5.1+cu124
|
76 |
+
- Datasets 3.3.2
|
77 |
+
- Tokenizers 0.21.0
|