Ludo33 commited on
Commit
8904a2b
·
verified ·
1 Parent(s): b444195

End of training

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/deberta-v3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: deberta_Energie
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # deberta_Energie
19
+
20
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0142
23
+ - Accuracy: 0.9913
24
+ - F1: 0.9913
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 5e-05
44
+ - train_batch_size: 32
45
+ - eval_batch_size: 32
46
+ - seed: 42
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 30
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
56
+ | 1.4003 | 1.0 | 116 | 0.9262 | 0.6524 | 0.6025 |
57
+ | 0.7697 | 2.0 | 232 | 0.3836 | 0.8906 | 0.8899 |
58
+ | 0.3904 | 3.0 | 348 | 0.2468 | 0.9256 | 0.9191 |
59
+ | 0.2749 | 4.0 | 464 | 0.2202 | 0.9324 | 0.9283 |
60
+ | 0.2043 | 5.0 | 580 | 0.1122 | 0.9672 | 0.9673 |
61
+ | 0.1808 | 6.0 | 696 | 0.1004 | 0.9701 | 0.9706 |
62
+ | 0.1274 | 7.0 | 812 | 0.0822 | 0.9745 | 0.9747 |
63
+ | 0.1018 | 8.0 | 928 | 0.0673 | 0.9791 | 0.9794 |
64
+ | 0.0711 | 9.0 | 1044 | 0.0457 | 0.9870 | 0.9870 |
65
+ | 0.0609 | 10.0 | 1160 | 0.0370 | 0.9867 | 0.9867 |
66
+ | 0.0594 | 11.0 | 1276 | 0.0240 | 0.9886 | 0.9886 |
67
+ | 0.0332 | 12.0 | 1392 | 0.0182 | 0.9913 | 0.9913 |
68
+ | 0.0278 | 13.0 | 1508 | 0.0183 | 0.9908 | 0.9908 |
69
+ | 0.0281 | 14.0 | 1624 | 0.0142 | 0.9913 | 0.9913 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.48.3
75
+ - Pytorch 2.5.1+cu124
76
+ - Datasets 3.3.2
77
+ - Tokenizers 0.21.0