File size: 2,482 Bytes
8904a2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: deberta_Energie
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta_Energie

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0142
- Accuracy: 0.9913
- F1: 0.9913

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.4003        | 1.0   | 116  | 0.9262          | 0.6524   | 0.6025 |
| 0.7697        | 2.0   | 232  | 0.3836          | 0.8906   | 0.8899 |
| 0.3904        | 3.0   | 348  | 0.2468          | 0.9256   | 0.9191 |
| 0.2749        | 4.0   | 464  | 0.2202          | 0.9324   | 0.9283 |
| 0.2043        | 5.0   | 580  | 0.1122          | 0.9672   | 0.9673 |
| 0.1808        | 6.0   | 696  | 0.1004          | 0.9701   | 0.9706 |
| 0.1274        | 7.0   | 812  | 0.0822          | 0.9745   | 0.9747 |
| 0.1018        | 8.0   | 928  | 0.0673          | 0.9791   | 0.9794 |
| 0.0711        | 9.0   | 1044 | 0.0457          | 0.9870   | 0.9870 |
| 0.0609        | 10.0  | 1160 | 0.0370          | 0.9867   | 0.9867 |
| 0.0594        | 11.0  | 1276 | 0.0240          | 0.9886   | 0.9886 |
| 0.0332        | 12.0  | 1392 | 0.0182          | 0.9913   | 0.9913 |
| 0.0278        | 13.0  | 1508 | 0.0183          | 0.9908   | 0.9908 |
| 0.0281        | 14.0  | 1624 | 0.0142          | 0.9913   | 0.9913 |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0