rag-topic-model / README.md
3lv27's picture
Add BERTopic model
5dad55e verified
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

rag-topic-model

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("3lv27/rag-topic-model")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 5
  • Number of training documents: 201
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 my - for - was - payment - it 17 -1_my_for_was_payment
0 refund - nike - my - store - for 41 0_refund_nike_my_store
1 my - the - payment - app - balance 72 1_my_the_payment_app
2 to - email - my - account - the 37 2_to_email_my_account
3 card - klarna - details - to - do 34 3_card_klarna_details_to

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 2.0.2
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 3.1.1
  • Transformers: 4.45.2
  • Numba: 0.60.0
  • Plotly: 6.0.0
  • Python: 3.9.6