--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # rag-topic-model This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("3lv27/rag-topic-model") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 5 * Number of training documents: 201
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | my - for - was - payment - it | 17 | -1_my_for_was_payment | | 0 | refund - nike - my - store - for | 41 | 0_refund_nike_my_store | | 1 | my - the - payment - app - balance | 72 | 1_my_the_payment_app | | 2 | to - email - my - account - the | 37 | 2_to_email_my_account | | 3 | card - klarna - details - to - do | 34 | 3_card_klarna_details_to |
## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 2.0.2 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.6.1 * Sentence-transformers: 3.1.1 * Transformers: 4.45.2 * Numba: 0.60.0 * Plotly: 6.0.0 * Python: 3.9.6