File size: 1,700 Bytes
5dad55e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# rag-topic-model
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("3lv27/rag-topic-model")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 5
* Number of training documents: 201
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | my - for - was - payment - it | 17 | -1_my_for_was_payment |
| 0 | refund - nike - my - store - for | 41 | 0_refund_nike_my_store |
| 1 | my - the - payment - app - balance | 72 | 1_my_the_payment_app |
| 2 | to - email - my - account - the | 37 | 2_to_email_my_account |
| 3 | card - klarna - details - to - do | 34 | 3_card_klarna_details_to |
</details>
## Training hyperparameters
* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 2.0.2
* HDBSCAN: 0.8.40
* UMAP: 0.5.7
* Pandas: 2.2.3
* Scikit-Learn: 1.6.1
* Sentence-transformers: 3.1.1
* Transformers: 4.45.2
* Numba: 0.60.0
* Plotly: 6.0.0
* Python: 3.9.6
|