zihoo's picture
Add new SentenceTransformer model.
421e768 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8000
- loss:SoftmaxLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: I monitor how I feel about collaborative projects.
sentences:
- I redirect my attention when I catch myself daydreaming.
- I accept external feedback as a tool for improvement.
- I pay attention to non-verbal cues from others.
- source_sentence: I maintain focus by taking regular breaks.
sentences:
- I reflect on how my environment impacts my focus.
- I accept my mistakes as part of my learning process.
- I remain aware of my body's signals during long work hours.
- source_sentence: I refocus quickly when interrupted by coworkers.
sentences:
- I remain conscious of my work-life balance.
- I refrain from joining in their social gatherings
- I concentrate on tasks without getting sidetracked by emails.
- source_sentence: I accept that not all outcomes are within my control.
sentences:
- I think they conceal ulterior motives behind their actions
- I accept responsibility for my work outcomes.
- I am mindful of my thoughts when assigned new tasks.
- source_sentence: I accept team dynamics as they naturally evolve.
sentences:
- I am mindful of my thoughts when assigned new tasks.
- I refocus my mind by practicing breathing exercises.
- I commit total focus to achieving project milestones.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-WMNLI2")
# Run inference
sentences = [
'I accept team dynamics as they naturally evolve.',
'I am mindful of my thoughts when assigned new tasks.',
'I commit total focus to achieving project milestones.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 8,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.72 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.82 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>0: ~24.50%</li><li>1: ~38.80%</li><li>2: ~36.70%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:---------------------------------------------------------------------|:---------------------------------------------------------------------|:---------------|
| <code>I accept my role in the team's shared responsibilities.</code> | <code>I feel uneasy whenever I hear their voice</code> | <code>2</code> |
| <code>I track my emotional response to workload changes.</code> | <code>I accept differing work ethics from colleagues.</code> | <code>1</code> |
| <code>I focus solely on the conversation in meetings.</code> | <code>I track my emotional response to coworker interactions.</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 2,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.69 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.83 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>0: ~24.20%</li><li>1: ~36.50%</li><li>2: ~39.30%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------------|:-------------------------------------------------------------|:---------------|
| <code>I concentrate intensely on finalizing reports.</code> | <code>I notice how music affects my work mood.</code> | <code>1</code> |
| <code>I notice how lighting affects my work energy.</code> | <code>I accept my emotional reactions to work stress.</code> | <code>1</code> |
| <code>I pay undivided attention to ongoing conversations.</code> | <code>I maintain focus during prolonged tasks.</code> | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 3e-05
- `num_train_epochs`: 7
- `warmup_ratio`: 0.01
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 7
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.01
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|:-----:|:----:|:-------------:|:---------------:|
| 0.4 | 100 | 0.9876 | 0.8531 |
| 0.8 | 200 | 0.8112 | 0.7504 |
| 1.2 | 300 | 0.7278 | 0.6803 |
| 1.6 | 400 | 0.6696 | 0.6273 |
| 2.0 | 500 | 0.6303 | 0.5837 |
| 2.4 | 600 | 0.5928 | 0.5489 |
| 2.8 | 700 | 0.5513 | 0.5215 |
| 3.2 | 800 | 0.5439 | 0.4973 |
| 3.6 | 900 | 0.5101 | 0.4782 |
| 4.0 | 1000 | 0.4875 | 0.4622 |
| 4.4 | 1100 | 0.4784 | 0.4492 |
| 4.8 | 1200 | 0.4723 | 0.4381 |
| 5.2 | 1300 | 0.4538 | 0.4307 |
| 5.6 | 1400 | 0.4523 | 0.4231 |
| 6.0 | 1500 | 0.449 | 0.4179 |
| 6.4 | 1600 | 0.443 | 0.4149 |
| 6.8 | 1700 | 0.442 | 0.4132 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->