File size: 14,964 Bytes
6e71c9f
 
 
 
 
 
aa3ca74
6e71c9f
 
 
aa3ca74
6e71c9f
aa3ca74
 
 
 
6e71c9f
aa3ca74
 
 
 
6e71c9f
aa3ca74
 
 
 
8e75f27
aa3ca74
 
 
 
6e71c9f
aa3ca74
 
 
6e71c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa3ca74
 
 
6e71c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa3ca74
32c2f19
6e71c9f
aa3ca74
 
 
 
6e71c9f
aa3ca74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e71c9f
 
 
9ef6314
 
aa3ca74
421e768
 
 
aa3ca74
32c2f19
6e71c9f
 
 
 
 
 
aa3ca74
6e71c9f
421e768
 
6e71c9f
 
 
 
 
421e768
6e71c9f
 
 
 
32c2f19
aa3ca74
6e71c9f
 
 
32c2f19
6e71c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c2f19
6e71c9f
 
 
32c2f19
aa3ca74
 
421e768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c2f19
 
6e71c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8000
- loss:SoftmaxLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: I monitor how I feel about collaborative projects.
  sentences:
  - I redirect my attention when I catch myself daydreaming.
  - I accept external feedback as a tool for improvement.
  - I pay attention to non-verbal cues from others.
- source_sentence: I maintain focus by taking regular breaks.
  sentences:
  - I reflect on how my environment impacts my focus.
  - I accept my mistakes as part of my learning process.
  - I remain aware of my body's signals during long work hours.
- source_sentence: I refocus quickly when interrupted by coworkers.
  sentences:
  - I remain conscious of my work-life balance.
  - I refrain from joining in their social gatherings
  - I concentrate on tasks without getting sidetracked by emails.
- source_sentence: I accept that not all outcomes are within my control.
  sentences:
  - I think they conceal ulterior motives behind their actions
  - I accept responsibility for my work outcomes.
  - I am mindful of my thoughts when assigned new tasks.
- source_sentence: I accept team dynamics as they naturally evolve.
  sentences:
  - I am mindful of my thoughts when assigned new tasks.
  - I refocus my mind by practicing breathing exercises.
  - I commit total focus to achieving project milestones.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-WMNLI2")
# Run inference
sentences = [
    'I accept team dynamics as they naturally evolve.',
    'I am mindful of my thoughts when assigned new tasks.',
    'I commit total focus to achieving project milestones.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 8,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | label                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                                                |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.72 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.82 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>0: ~24.50%</li><li>1: ~38.80%</li><li>2: ~36.70%</li></ul> |
* Samples:
  | sentence1                                                            | sentence2                                                            | label          |
  |:---------------------------------------------------------------------|:---------------------------------------------------------------------|:---------------|
  | <code>I accept my role in the team's shared responsibilities.</code> | <code>I feel uneasy whenever I hear their voice</code>               | <code>2</code> |
  | <code>I track my emotional response to workload changes.</code>      | <code>I accept differing work ethics from colleagues.</code>         | <code>1</code> |
  | <code>I focus solely on the conversation in meetings.</code>         | <code>I track my emotional response to coworker interactions.</code> | <code>1</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Evaluation Dataset

#### Unnamed Dataset


* Size: 2,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | label                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                                                |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.69 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 11.83 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>0: ~24.20%</li><li>1: ~36.50%</li><li>2: ~39.30%</li></ul> |
* Samples:
  | sentence1                                                        | sentence2                                                    | label          |
  |:-----------------------------------------------------------------|:-------------------------------------------------------------|:---------------|
  | <code>I concentrate intensely on finalizing reports.</code>      | <code>I notice how music affects my work mood.</code>        | <code>1</code> |
  | <code>I notice how lighting affects my work energy.</code>       | <code>I accept my emotional reactions to work stress.</code> | <code>1</code> |
  | <code>I pay undivided attention to ongoing conversations.</code> | <code>I maintain focus during prolonged tasks.</code>        | <code>0</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 3e-05
- `num_train_epochs`: 7
- `warmup_ratio`: 0.01

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 7
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.01
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|:-----:|:----:|:-------------:|:---------------:|
| 0.4   | 100  | 0.9876        | 0.8531          |
| 0.8   | 200  | 0.8112        | 0.7504          |
| 1.2   | 300  | 0.7278        | 0.6803          |
| 1.6   | 400  | 0.6696        | 0.6273          |
| 2.0   | 500  | 0.6303        | 0.5837          |
| 2.4   | 600  | 0.5928        | 0.5489          |
| 2.8   | 700  | 0.5513        | 0.5215          |
| 3.2   | 800  | 0.5439        | 0.4973          |
| 3.6   | 900  | 0.5101        | 0.4782          |
| 4.0   | 1000 | 0.4875        | 0.4622          |
| 4.4   | 1100 | 0.4784        | 0.4492          |
| 4.8   | 1200 | 0.4723        | 0.4381          |
| 5.2   | 1300 | 0.4538        | 0.4307          |
| 5.6   | 1400 | 0.4523        | 0.4231          |
| 6.0   | 1500 | 0.449         | 0.4179          |
| 6.4   | 1600 | 0.443         | 0.4149          |
| 6.8   | 1700 | 0.442         | 0.4132          |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->