yuhkis's picture
Update README.md
5e65fdf verified
---
library_name: transformers
tags:
- llm-jp
- japanese
- instruction-tuning
---
# Model Card for yuhkis/llm-jp-3-13b-it_lora
## Model Details
### Model Description
This is a LoRA-tuned version of LLM-jp-3-13b, fine-tuned using Unsloth techniques and Hugging Face's TRL library for accelerated training.
- **Developed by:** Yuhki Shiraishi
- **Model type:** Instruction-tuned Japanese Language Model
- **Language:** Japanese
- **License:** CC-BY-NC-SA
- **Finetuned from model:** llm-jp/llm-jp-3-13b
## Uses
### Output Generation and Format
#### Implementation Details
To generate output in the required JSONL format:
```python
# 必要なライブラリをインストール
%%capture
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -U torch
!pip install -U peft
# 必要なライブラリを読み込み
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re
# ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "yuhkis/llm-jp-3-13b-it_lora"
# Hugging Face Token を指定。
HF_TOKEN = "" #@param {type:"string"}
# unslothのFastLanguageModelで元のモデルをロード。
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
# 元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
# タスクとなるデータの読み込み。
# 事前にデータをアップロードしてください。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# モデルを用いてタスクの推論。
# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
# 結果をjsonlで保存。
json_file_id = re.sub(".*/", "", adapter_id)
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
```
#### Output Format Specification
Required fields in the JSONL output:
- task_id: Task identifier (integer)
- output: Generated response (string)
Example output format:
```json
{"task_id": 1, "output": "生成された応答1"}
{"task_id": 2, "output": "生成された応答2"}
```
### Recommendations
- Ensure consistency in the input prompt structure to maintain output quality.
- Evaluate generated outputs for accuracy, particularly for critical applications.
## Training Details
### Training Data
- Dataset: Ichikara Instruction Dataset
### Training Procedure
- **Training regime:** bf16 mixed precision, accelerated using Unsloth and Hugging Face's TRL library
- **Optimization:** LoRA (Low-Rank Adaptation)
## Technical Specifications
### Model Architecture
- Base model: LLM-jp-3-13b
- Adaptation method: LoRA
- Training enhancement: Unsloth framework
## Citation
**BibTeX:**
```bibtex
@misc{shiraishi2024llm,
title={LLM-jp-3-13b-it_lora: Instruction-tuned Japanese Language Model with Accelerated Training},
author={Yuhki Shiraishi},
year={2024},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/yuhkis/llm-jp-3-13b-it_lora}}
}
```
**Base Model Citation:**
```bibtex
@misc{llm-jp2024,
title={LLM-jp-3: Large Language Model for Japanese},
author={LLM-jp Project Team},
year={2024},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/llm-jp/llm-jp-3-13b}}
}
```
**Training Data Citation:**
```
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎.
ichikara-instruction: LLMのための日本語インストラクションデータの構築.
言語処理学会第30回年次大会(2024)
```
## Model Card Contact
**Primary Contact:**
- Name: Yuhki Shiraishi
- GitHub: [@yuhkis](https://github.com/yuhkis)
For questions regarding this model, please open an issue in the GitHub repository or contact via HuggingFace discussion forum.
Please include "LLM-jp-3-13b-it_lora" in the subject line of any correspondence.