|
--- |
|
library_name: transformers |
|
tags: |
|
- llm-jp |
|
- japanese |
|
- instruction-tuning |
|
--- |
|
|
|
# Model Card for yuhkis/llm-jp-3-13b-it_lora |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
This is a LoRA-tuned version of LLM-jp-3-13b, fine-tuned using Unsloth techniques and Hugging Face's TRL library for accelerated training. |
|
|
|
- **Developed by:** Yuhki Shiraishi |
|
- **Model type:** Instruction-tuned Japanese Language Model |
|
- **Language:** Japanese |
|
- **License:** CC-BY-NC-SA |
|
- **Finetuned from model:** llm-jp/llm-jp-3-13b |
|
|
|
## Uses |
|
|
|
### Output Generation and Format |
|
|
|
#### Implementation Details |
|
|
|
To generate output in the required JSONL format: |
|
|
|
```python |
|
# 必要なライブラリをインストール |
|
%%capture |
|
!pip install unsloth |
|
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install -U torch |
|
!pip install -U peft |
|
|
|
# 必要なライブラリを読み込み |
|
from unsloth import FastLanguageModel |
|
from peft import PeftModel |
|
import torch |
|
import json |
|
from tqdm import tqdm |
|
import re |
|
|
|
# ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。 |
|
model_id = "llm-jp/llm-jp-3-13b" |
|
adapter_id = "yuhkis/llm-jp-3-13b-it_lora" |
|
|
|
# Hugging Face Token を指定。 |
|
HF_TOKEN = "" #@param {type:"string"} |
|
|
|
# unslothのFastLanguageModelで元のモデルをロード。 |
|
dtype = None # Noneにしておけば自動で設定 |
|
load_in_4bit = True # 今回は13Bモデルを扱うためTrue |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_id, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
) |
|
|
|
# 元のモデルにLoRAのアダプタを統合。 |
|
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) |
|
|
|
# タスクとなるデータの読み込み。 |
|
# 事前にデータをアップロードしてください。 |
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
# モデルを用いてタスクの推論。 |
|
|
|
# 推論するためにモデルのモードを変更 |
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
# 結果をjsonlで保存。 |
|
json_file_id = re.sub(".*/", "", adapter_id) |
|
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
``` |
|
|
|
#### Output Format Specification |
|
|
|
Required fields in the JSONL output: |
|
- task_id: Task identifier (integer) |
|
- output: Generated response (string) |
|
|
|
Example output format: |
|
```json |
|
{"task_id": 1, "output": "生成された応答1"} |
|
{"task_id": 2, "output": "生成された応答2"} |
|
``` |
|
|
|
### Recommendations |
|
|
|
- Ensure consistency in the input prompt structure to maintain output quality. |
|
- Evaluate generated outputs for accuracy, particularly for critical applications. |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
- Dataset: Ichikara Instruction Dataset |
|
|
|
### Training Procedure |
|
|
|
- **Training regime:** bf16 mixed precision, accelerated using Unsloth and Hugging Face's TRL library |
|
- **Optimization:** LoRA (Low-Rank Adaptation) |
|
|
|
## Technical Specifications |
|
|
|
### Model Architecture |
|
|
|
- Base model: LLM-jp-3-13b |
|
- Adaptation method: LoRA |
|
- Training enhancement: Unsloth framework |
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
```bibtex |
|
@misc{shiraishi2024llm, |
|
title={LLM-jp-3-13b-it_lora: Instruction-tuned Japanese Language Model with Accelerated Training}, |
|
author={Yuhki Shiraishi}, |
|
year={2024}, |
|
publisher={Hugging Face}, |
|
howpublished={\url{https://huggingface.co/yuhkis/llm-jp-3-13b-it_lora}} |
|
} |
|
``` |
|
|
|
**Base Model Citation:** |
|
```bibtex |
|
@misc{llm-jp2024, |
|
title={LLM-jp-3: Large Language Model for Japanese}, |
|
author={LLM-jp Project Team}, |
|
year={2024}, |
|
publisher={Hugging Face}, |
|
howpublished={\url{https://huggingface.co/llm-jp/llm-jp-3-13b}} |
|
} |
|
``` |
|
|
|
**Training Data Citation:** |
|
``` |
|
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. |
|
ichikara-instruction: LLMのための日本語インストラクションデータの構築. |
|
言語処理学会第30回年次大会(2024) |
|
``` |
|
|
|
## Model Card Contact |
|
|
|
**Primary Contact:** |
|
- Name: Yuhki Shiraishi |
|
- GitHub: [@yuhkis](https://github.com/yuhkis) |
|
|
|
For questions regarding this model, please open an issue in the GitHub repository or contact via HuggingFace discussion forum. |
|
|
|
Please include "LLM-jp-3-13b-it_lora" in the subject line of any correspondence. |
|
|
|
|