--- library_name: transformers tags: - llm-jp - japanese - instruction-tuning --- # Model Card for yuhkis/llm-jp-3-13b-it_lora ## Model Details ### Model Description This is a LoRA-tuned version of LLM-jp-3-13b, fine-tuned using Unsloth techniques and Hugging Face's TRL library for accelerated training. - **Developed by:** Yuhki Shiraishi - **Model type:** Instruction-tuned Japanese Language Model - **Language:** Japanese - **License:** CC-BY-NC-SA - **Finetuned from model:** llm-jp/llm-jp-3-13b ## Uses ### Output Generation and Format #### Implementation Details To generate output in the required JSONL format: ```python # 必要なライブラリをインストール %%capture !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -U torch !pip install -U peft # 必要なライブラリを読み込み from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re # ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。 model_id = "llm-jp/llm-jp-3-13b" adapter_id = "yuhkis/llm-jp-3-13b-it_lora" # Hugging Face Token を指定。 HF_TOKEN = "" #@param {type:"string"} # unslothのFastLanguageModelで元のモデルをロード。 dtype = None # Noneにしておけば自動で設定 load_in_4bit = True # 今回は13Bモデルを扱うためTrue model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) # 元のモデルにLoRAのアダプタを統合。 model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) # タスクとなるデータの読み込み。 # 事前にデータをアップロードしてください。 datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # モデルを用いてタスクの推論。 # 推論するためにモデルのモードを変更 FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) # 結果をjsonlで保存。 json_file_id = re.sub(".*/", "", adapter_id) with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ``` #### Output Format Specification Required fields in the JSONL output: - task_id: Task identifier (integer) - output: Generated response (string) Example output format: ```json {"task_id": 1, "output": "生成された応答1"} {"task_id": 2, "output": "生成された応答2"} ``` ### Recommendations - Ensure consistency in the input prompt structure to maintain output quality. - Evaluate generated outputs for accuracy, particularly for critical applications. ## Training Details ### Training Data - Dataset: Ichikara Instruction Dataset ### Training Procedure - **Training regime:** bf16 mixed precision, accelerated using Unsloth and Hugging Face's TRL library - **Optimization:** LoRA (Low-Rank Adaptation) ## Technical Specifications ### Model Architecture - Base model: LLM-jp-3-13b - Adaptation method: LoRA - Training enhancement: Unsloth framework ## Citation **BibTeX:** ```bibtex @misc{shiraishi2024llm, title={LLM-jp-3-13b-it_lora: Instruction-tuned Japanese Language Model with Accelerated Training}, author={Yuhki Shiraishi}, year={2024}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/yuhkis/llm-jp-3-13b-it_lora}} } ``` **Base Model Citation:** ```bibtex @misc{llm-jp2024, title={LLM-jp-3: Large Language Model for Japanese}, author={LLM-jp Project Team}, year={2024}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/llm-jp/llm-jp-3-13b}} } ``` **Training Data Citation:** ``` 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024) ``` ## Model Card Contact **Primary Contact:** - Name: Yuhki Shiraishi - GitHub: [@yuhkis](https://github.com/yuhkis) For questions regarding this model, please open an issue in the GitHub repository or contact via HuggingFace discussion forum. Please include "LLM-jp-3-13b-it_lora" in the subject line of any correspondence.