metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
A young researcher presenting their findings on a novel approach to
information retrieval
- text: A cartoonist specializing in educational materials
- text: >-
A fellow child actor who shares the excitement and challenges of being
part of research
- text: >-
A teenage daughter who excels in her studies due to the integration of
technology in her education
- text: >-
An under 16 teenager who lost the chance to be selected for the national
team in U-15 championship
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.96
name: Accuracy
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
not_minor |
|
minor |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.96 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("A cartoonist specializing in educational materials")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 14.34 | 26 |
Label | Training Sample Count |
---|---|
not_minor | 100 |
minor | 100 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0032 | 1 | 0.2636 | - |
0.1582 | 50 | 0.2471 | - |
0.3165 | 100 | 0.2067 | - |
0.4747 | 150 | 0.0207 | - |
0.6329 | 200 | 0.0021 | - |
0.7911 | 250 | 0.0015 | - |
0.9494 | 300 | 0.0013 | - |
1.0 | 316 | - | 0.0825 |
1.1076 | 350 | 0.0011 | - |
1.2658 | 400 | 0.001 | - |
1.4241 | 450 | 0.0009 | - |
1.5823 | 500 | 0.0008 | - |
1.7405 | 550 | 0.0008 | - |
1.8987 | 600 | 0.0007 | - |
2.0 | 632 | - | 0.0813 |
2.0570 | 650 | 0.001 | - |
2.2152 | 700 | 0.0007 | - |
2.3734 | 750 | 0.0007 | - |
2.5316 | 800 | 0.0006 | - |
2.6899 | 850 | 0.0006 | - |
2.8481 | 900 | 0.0006 | - |
3.0 | 948 | - | 0.0736 |
3.0063 | 950 | 0.0006 | - |
3.1646 | 1000 | 0.0006 | - |
3.3228 | 1050 | 0.0005 | - |
3.4810 | 1100 | 0.0006 | - |
3.6392 | 1150 | 0.0005 | - |
3.7975 | 1200 | 0.0006 | - |
3.9557 | 1250 | 0.0005 | - |
4.0 | 1264 | - | 0.0754 |
Framework Versions
- Python: 3.12.4
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.45.2
- PyTorch: 2.5.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}