SetFit with BAAI/bge-small-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
not_minor
  • 'A young manager in her very first leadership position.'
  • 'A detail-oriented student who excels in organizing group study sessions in the library'
  • 'A fellow student involved in a book club who prefers physical copies for annotation and discussion'
minor
  • 'A teenage girl from a disadvantaged background who is empowered by the health education programs'
  • "A young child from a diverse family background who is involved in the candidate's research studies"
  • 'A child with a passion for music who learns best through creative and interactive activities'

Evaluation

Metrics

Label Accuracy
all 0.96

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("A cartoonist specializing in educational materials")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 14.34 26
Label Training Sample Count
not_minor 100
minor 100

Training Hyperparameters

  • batch_size: (64, 64)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0032 1 0.2636 -
0.1582 50 0.2471 -
0.3165 100 0.2067 -
0.4747 150 0.0207 -
0.6329 200 0.0021 -
0.7911 250 0.0015 -
0.9494 300 0.0013 -
1.0 316 - 0.0825
1.1076 350 0.0011 -
1.2658 400 0.001 -
1.4241 450 0.0009 -
1.5823 500 0.0008 -
1.7405 550 0.0008 -
1.8987 600 0.0007 -
2.0 632 - 0.0813
2.0570 650 0.001 -
2.2152 700 0.0007 -
2.3734 750 0.0007 -
2.5316 800 0.0006 -
2.6899 850 0.0006 -
2.8481 900 0.0006 -
3.0 948 - 0.0736
3.0063 950 0.0006 -
3.1646 1000 0.0006 -
3.3228 1050 0.0005 -
3.4810 1100 0.0006 -
3.6392 1150 0.0005 -
3.7975 1200 0.0006 -
3.9557 1250 0.0005 -
4.0 1264 - 0.0754

Framework Versions

  • Python: 3.12.4
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ychen/minor-persona-detection-en

Finetuned
(143)
this model

Evaluation results