metadata
library_name: transformers
license: apache-2.0
base_model: Alibaba-NLP/gte-multilingual-mlm-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: koen_punctuation
results: []
koen_punctuation
This model is a fine-tuned version of Alibaba-NLP/gte-multilingual-mlm-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0192
- Accuracy: 0.9797
- Precision O: 0.9916
- Recall O: 0.9917
- F1 O: 0.9917
- Precision Comma: 0.8204
- Recall Comma: 0.8329
- F1 Comma: 0.8266
- Precision Period: 0.9246
- Recall Period: 0.9186
- F1 Period: 0.9216
- Precision Question: 0.8395
- Recall Question: 0.8254
- F1 Question: 0.8324
- Precision Exclamation: 1.0
- Recall Exclamation: 0.3846
- F1 Exclamation: 0.5556
- Precision Macro: 0.9152
- Recall Macro: 0.7906
- F1 Macro: 0.8256
Model description
Punctuation restoration for spoken language.
Install & Usage
pip install spokentxt-punctuation-restoration
from spokentxt_punctuation_restoration import PunctuationModel
model = PunctuationModel(model_name = "whooray/koen_punctuation", device = "cpu") # device = cuda:0
model("μλ
νμΈμ")
#'μλ
νμΈμ.'
model("Hello how are you")
#'Hello, how are you?'
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0