File size: 2,249 Bytes
56cf51c 5c132a5 56cf51c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
library_name: transformers
license: apache-2.0
base_model: Alibaba-NLP/gte-multilingual-mlm-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: koen_punctuation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# koen_punctuation
This model is a fine-tuned version of [Alibaba-NLP/gte-multilingual-mlm-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-mlm-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0192
- Accuracy: 0.9797
- Precision O: 0.9916
- Recall O: 0.9917
- F1 O: 0.9917
- Precision Comma: 0.8204
- Recall Comma: 0.8329
- F1 Comma: 0.8266
- Precision Period: 0.9246
- Recall Period: 0.9186
- F1 Period: 0.9216
- Precision Question: 0.8395
- Recall Question: 0.8254
- F1 Question: 0.8324
- Precision Exclamation: 1.0
- Recall Exclamation: 0.3846
- F1 Exclamation: 0.5556
- Precision Macro: 0.9152
- Recall Macro: 0.7906
- F1 Macro: 0.8256
## Model description
Punctuation restoration for spoken language.
## Install & Usage
```bash
pip install spokentxt-punctuation-restoration
```
```python
from spokentxt_punctuation_restoration import PunctuationModel
model = PunctuationModel(model_name = "whooray/koen_punctuation", device = "cpu") # device = cuda:0
model("μλ
νμΈμ")
#'μλ
νμΈμ.'
model("Hello how are you")
#'Hello, how are you?'
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
|