venkateshtata's picture
update model card README.md
bda3d28
|
raw
history blame
4.51 kB
metadata
license: cc-by-nc-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-ucf101-subset
    results: []

videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1287
  • Accuracy: 0.8333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 15200

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3638 0.02 304 0.9850 0.6118
0.9176 1.02 608 1.6993 0.3882
0.5243 2.02 912 1.1637 0.8026
0.0005 3.02 1216 0.8620 0.8092
0.5382 4.02 1520 0.9102 0.8092
0.0009 5.02 1824 1.2623 0.8355
0.0007 6.02 2128 1.4007 0.7829
0.254 7.02 2432 3.3258 0.4803
0.0005 8.02 2736 1.0090 0.8684
0.0003 9.02 3040 1.6322 0.7632
0.0015 10.02 3344 3.1927 0.5395
0.0006 11.02 3648 2.3243 0.7237
0.0004 12.02 3952 1.4877 0.7961
0.0007 13.02 4256 1.4014 0.8224
0.0001 14.02 4560 0.9946 0.8487
0.6249 15.02 4864 1.2847 0.7961
3.8326 16.02 5168 1.7870 0.7171
0.0646 17.02 5472 2.3504 0.6579
0.0003 18.02 5776 0.9367 0.8618
0.0004 19.02 6080 2.5710 0.6316
0.5626 20.02 6384 2.6711 0.6842
0.9002 21.02 6688 2.1456 0.7566
0.0002 22.02 6992 2.3488 0.7237
0.6977 23.02 7296 1.5013 0.8092
0.0001 24.02 7600 1.9442 0.7763
0.0003 25.02 7904 1.8732 0.8026
0.0001 26.02 8208 2.0295 0.7829
0.0001 27.02 8512 1.7623 0.8092
0.0001 28.02 8816 1.8035 0.8026
0.0 29.02 9120 1.7754 0.8092
0.0001 30.02 9424 1.7622 0.7961
0.0001 31.02 9728 1.7557 0.7895
0.0002 32.02 10032 1.5907 0.8224
0.0001 33.02 10336 1.6859 0.8158
0.0 34.02 10640 1.8641 0.7961
0.0 35.02 10944 1.7088 0.8224
0.0 36.02 11248 1.6140 0.8421
0.0 37.02 11552 1.6678 0.8355
0.0 38.02 11856 1.6991 0.8355
0.0 39.02 12160 1.7723 0.8224
0.0 40.02 12464 1.7865 0.8224
0.6067 41.02 12768 2.6848 0.7368
0.0001 42.02 13072 1.6834 0.8289
0.0 43.02 13376 1.7188 0.8289
0.9374 44.02 13680 1.5728 0.8421
0.0 45.02 13984 2.0988 0.7895
0.0 46.02 14288 2.0841 0.7829
0.0 47.02 14592 2.2198 0.7632
0.0 48.02 14896 2.2020 0.7632
0.0 49.02 15200 2.0693 0.7763

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2