venkateshtata commited on
Commit
bda3d28
·
1 Parent(s): cf00409

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -9
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 1.6521
20
- - Accuracy: 0.6429
21
 
22
  ## Model description
23
 
@@ -43,16 +43,62 @@ The following hyperparameters were used during training:
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_ratio: 0.1
46
- - training_steps: 1216
47
 
48
  ### Training results
49
 
50
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
- | 0.2209 | 0.25 | 304 | 1.3946 | 0.6382 |
53
- | 0.061 | 1.25 | 608 | 2.3935 | 0.5132 |
54
- | 0.8559 | 2.25 | 912 | 2.3490 | 0.5461 |
55
- | 0.0006 | 3.25 | 1216 | 3.0925 | 0.4408 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
 
58
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 1.1287
20
+ - Accuracy: 0.8333
21
 
22
  ## Model description
23
 
 
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 15200
47
 
48
  ### Training results
49
 
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
52
+ | 0.3638 | 0.02 | 304 | 0.9850 | 0.6118 |
53
+ | 0.9176 | 1.02 | 608 | 1.6993 | 0.3882 |
54
+ | 0.5243 | 2.02 | 912 | 1.1637 | 0.8026 |
55
+ | 0.0005 | 3.02 | 1216 | 0.8620 | 0.8092 |
56
+ | 0.5382 | 4.02 | 1520 | 0.9102 | 0.8092 |
57
+ | 0.0009 | 5.02 | 1824 | 1.2623 | 0.8355 |
58
+ | 0.0007 | 6.02 | 2128 | 1.4007 | 0.7829 |
59
+ | 0.254 | 7.02 | 2432 | 3.3258 | 0.4803 |
60
+ | 0.0005 | 8.02 | 2736 | 1.0090 | 0.8684 |
61
+ | 0.0003 | 9.02 | 3040 | 1.6322 | 0.7632 |
62
+ | 0.0015 | 10.02 | 3344 | 3.1927 | 0.5395 |
63
+ | 0.0006 | 11.02 | 3648 | 2.3243 | 0.7237 |
64
+ | 0.0004 | 12.02 | 3952 | 1.4877 | 0.7961 |
65
+ | 0.0007 | 13.02 | 4256 | 1.4014 | 0.8224 |
66
+ | 0.0001 | 14.02 | 4560 | 0.9946 | 0.8487 |
67
+ | 0.6249 | 15.02 | 4864 | 1.2847 | 0.7961 |
68
+ | 3.8326 | 16.02 | 5168 | 1.7870 | 0.7171 |
69
+ | 0.0646 | 17.02 | 5472 | 2.3504 | 0.6579 |
70
+ | 0.0003 | 18.02 | 5776 | 0.9367 | 0.8618 |
71
+ | 0.0004 | 19.02 | 6080 | 2.5710 | 0.6316 |
72
+ | 0.5626 | 20.02 | 6384 | 2.6711 | 0.6842 |
73
+ | 0.9002 | 21.02 | 6688 | 2.1456 | 0.7566 |
74
+ | 0.0002 | 22.02 | 6992 | 2.3488 | 0.7237 |
75
+ | 0.6977 | 23.02 | 7296 | 1.5013 | 0.8092 |
76
+ | 0.0001 | 24.02 | 7600 | 1.9442 | 0.7763 |
77
+ | 0.0003 | 25.02 | 7904 | 1.8732 | 0.8026 |
78
+ | 0.0001 | 26.02 | 8208 | 2.0295 | 0.7829 |
79
+ | 0.0001 | 27.02 | 8512 | 1.7623 | 0.8092 |
80
+ | 0.0001 | 28.02 | 8816 | 1.8035 | 0.8026 |
81
+ | 0.0 | 29.02 | 9120 | 1.7754 | 0.8092 |
82
+ | 0.0001 | 30.02 | 9424 | 1.7622 | 0.7961 |
83
+ | 0.0001 | 31.02 | 9728 | 1.7557 | 0.7895 |
84
+ | 0.0002 | 32.02 | 10032 | 1.5907 | 0.8224 |
85
+ | 0.0001 | 33.02 | 10336 | 1.6859 | 0.8158 |
86
+ | 0.0 | 34.02 | 10640 | 1.8641 | 0.7961 |
87
+ | 0.0 | 35.02 | 10944 | 1.7088 | 0.8224 |
88
+ | 0.0 | 36.02 | 11248 | 1.6140 | 0.8421 |
89
+ | 0.0 | 37.02 | 11552 | 1.6678 | 0.8355 |
90
+ | 0.0 | 38.02 | 11856 | 1.6991 | 0.8355 |
91
+ | 0.0 | 39.02 | 12160 | 1.7723 | 0.8224 |
92
+ | 0.0 | 40.02 | 12464 | 1.7865 | 0.8224 |
93
+ | 0.6067 | 41.02 | 12768 | 2.6848 | 0.7368 |
94
+ | 0.0001 | 42.02 | 13072 | 1.6834 | 0.8289 |
95
+ | 0.0 | 43.02 | 13376 | 1.7188 | 0.8289 |
96
+ | 0.9374 | 44.02 | 13680 | 1.5728 | 0.8421 |
97
+ | 0.0 | 45.02 | 13984 | 2.0988 | 0.7895 |
98
+ | 0.0 | 46.02 | 14288 | 2.0841 | 0.7829 |
99
+ | 0.0 | 47.02 | 14592 | 2.2198 | 0.7632 |
100
+ | 0.0 | 48.02 | 14896 | 2.2020 | 0.7632 |
101
+ | 0.0 | 49.02 | 15200 | 2.0693 | 0.7763 |
102
 
103
 
104
  ### Framework versions