metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:956
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/multi-qa-mpnet-base-cos-v1
widget:
- source_sentence: >-
Does my insurance policy exclude medical costs for the first 30 days'
illness, but cover accident-related claims?
sentences:
- >-
any notice for renewal.
b. Renewal shall not be denied on the ground that the insured person
had made a claim or claims in the preceding
policy years.
- |-
• Minimum entry age for proposer/ spouse/ dependent parents - 18 years
• Maximum Entry Age for proposer/ spouse/ dependent parents - 80 years
• Minimum Entry age for dependent Children - 3 months
• Maximum Entry Age for dependent Children - 25 years
- >-
a. Expenses related to the treatment of any illness within 30 days from
the first policy commencement date shall
be excluded except claims arising due to an accident, provided the same
are covered.
- source_sentence: >-
I have a pre-authorization for a procedure, what should I bring along when
I get admitted to the hospital to avoid paying the medical bills?
sentences:
- |-
Obesity/ Weight Control
Change of Gender treatments
Cosmetic or plastic Surgery
Hazardous or Adventure sports
Breach of law
Excluded Providers
Substance Abuse and Alcohol
Wellness and Rejuvenation
Dietary Supplements &
Substances
- >-
56-60 11,950 12,760 7,874 18,887 13,573 9,243 17,848 13,162 21,348
16,437 11,308 24,345 18,177 13,206 35,360 29,906 24,726
61-65 14,352 15,319 9,444 22,688 16,298 11,089 21,442 15,804 25,652
19,744 13,571 29,256 21,833 15,852 42,495 35,932 29,699
- >-
specified must be produced to the Network Hospital identified in the
pre-authorization letter at the time of Y our
admission to the same.
iii. If the procedure above is followed, Y ou will not be required to
directly pay for the Medical Expenses above
- source_sentence: Can you tell me the range of insured sum for a 4 member family in INR?
sentences:
- |-
i. Obesity-related cardiomyopathy
ii. Coronary heart disease
iii. Severe Sleep Apnea
iv. Uncontrolled T ype2 Diabetes
7. Change-of-gender treatments: (Excl07)
- >-
Age/
deduc-
tible
200000 200000 300000 200000 300000 500000 300000 500000 300000 500000
1000000 300000 500000 1000000 300000 500000 1000000
21-25 5,010 5,361 3,326 7,906 5,695 3,899 7,466 5,523 8,918 6,882 4,759
10,163 7,610 5,553 14,756 12,498 10,354
- |-
CIN: U66010PN2000PLC015329, UIN:BAJHLIP23069V032223 13
FAMILY SIZE: 4 MEMBER
Sum
Insured
(in INR)
300000 500000 1000000 1500000 2000000 2500000 5000000
Age/
deduc-
tible
- source_sentence: >-
Does IRDAI have rules on portability that let someone who's been
continuously insured under any health policy from an Indian general or
health insurer carry over waiting period benefits?
sentences:
- >-
◼ WHAT ARE THE EXCLUSIONS AND WAITING PERIOD UNDER THE POLICY?
I. Waiting Period
A. Pre-Existing Diseases - Code- Excl01
a. Expenses related to the treatment of a pre-existing Disease (PED)
and its direct complications shall be excluded
- >-
has been continuously covered without any lapses under any health
insurance policy with an Indian General/
Health insurer, the proposed insured person will get the accrued
continuity benefits in waiting periods as per
IRDAI guidelines on portability.
- |-
Cumulative Bonus:
For every claim free policy year, there will be increase of 10% of
the Sum Insured, maximum up to 100%. If a claim is made in any
particular Policy Year, the Cumulative Bonus accrued shall not be
reduced.
SBIG Health Super T op-Up,
- source_sentence: >-
what kind of coverage is provided by insurance for medical expenses that
go beyond the normal amount?
sentences:
- |-
Enhances any existing health policy from any insurance provider
- corporate or personal
- >-
Age/
deduc-
tible
200000 200000 300000 200000 300000 500000 300000 500000 300000 500000
1000000 300000 500000 1000000 300000 500000 1000000
21-25 6,544 7,011 4,345 10,389 7,490 5,127 9,839 7,283 11,767 9,087
6,289 13,419 10,054 7,343 19,518 16,543 13,717
- >-
health insurance cover and provides wider health protection for you and
your family. In case of higher expenses
due to illness or accidents, Extra Care Plus policy takes care of the
additional expenses. It is important to consider
datasets:
- surajvbangera/mediclaim
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/multi-qa-mpnet-base-cos-v1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.3020833333333333
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8020833333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.875
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9583333333333334
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3020833333333333
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2673611111111111
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17499999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09583333333333333
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3020833333333333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8020833333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.875
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9583333333333334
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6497808285407043
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5484209656084658
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5512795209742883
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.28125
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.78125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.875
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9479166666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.28125
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2604166666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17499999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09479166666666665
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.28125
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.78125
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.875
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9479166666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6294431516700937
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5250578703703704
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5287000615125614
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.3020833333333333
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7916666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8854166666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9375
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3020833333333333
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2638888888888889
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1770833333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09375
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3020833333333333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7916666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8854166666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9375
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6396822227743622
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5409846230158731
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5445532958553793
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.2708333333333333
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.78125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.84375
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9479166666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2708333333333333
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2604166666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16874999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09479166666666666
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2708333333333333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.78125
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.84375
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9479166666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6229142362169651
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5167080026455027
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5187267142104471
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.25
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7291666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8333333333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9166666666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.25
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24305555555555558
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16666666666666666
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09166666666666666
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.25
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7291666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8333333333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9166666666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5921613565527261
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.486338458994709
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49077409326175775
name: Cosine Map@100
SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-cos-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-mpnet-base-cos-v1 on the mediclaim dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-mpnet-base-cos-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("surajvbangera/mediclaim_embedding")
# Run inference
sentences = [
'what kind of coverage is provided by insurance for medical expenses that go beyond the normal amount?',
'health insurance cover and provides wider health protection for you and your family. In case of higher expenses \ndue to illness or accidents, Extra Care Plus policy takes care of the additional expenses. It is important to consider',
'Age/\ndeduc-\ntible\n200000 200000 300000 200000 300000 500000 300000 500000 300000 500000 1000000 300000 500000 1000000 300000 500000 1000000\n21-25 6,544 7,011 4,345 10,389 7,490 5,127 9,839 7,283 11,767 9,087 6,289 13,419 10,054 7,343 19,518 16,543 13,717',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.3021 | 0.2812 | 0.3021 | 0.2708 | 0.25 |
cosine_accuracy@3 | 0.8021 | 0.7812 | 0.7917 | 0.7812 | 0.7292 |
cosine_accuracy@5 | 0.875 | 0.875 | 0.8854 | 0.8438 | 0.8333 |
cosine_accuracy@10 | 0.9583 | 0.9479 | 0.9375 | 0.9479 | 0.9167 |
cosine_precision@1 | 0.3021 | 0.2812 | 0.3021 | 0.2708 | 0.25 |
cosine_precision@3 | 0.2674 | 0.2604 | 0.2639 | 0.2604 | 0.2431 |
cosine_precision@5 | 0.175 | 0.175 | 0.1771 | 0.1687 | 0.1667 |
cosine_precision@10 | 0.0958 | 0.0948 | 0.0938 | 0.0948 | 0.0917 |
cosine_recall@1 | 0.3021 | 0.2812 | 0.3021 | 0.2708 | 0.25 |
cosine_recall@3 | 0.8021 | 0.7812 | 0.7917 | 0.7812 | 0.7292 |
cosine_recall@5 | 0.875 | 0.875 | 0.8854 | 0.8438 | 0.8333 |
cosine_recall@10 | 0.9583 | 0.9479 | 0.9375 | 0.9479 | 0.9167 |
cosine_ndcg@10 | 0.6498 | 0.6294 | 0.6397 | 0.6229 | 0.5922 |
cosine_mrr@10 | 0.5484 | 0.5251 | 0.541 | 0.5167 | 0.4863 |
cosine_map@100 | 0.5513 | 0.5287 | 0.5446 | 0.5187 | 0.4908 |
Training Details
Training Dataset
mediclaim
- Dataset: mediclaim at 943cab1
- Size: 956 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 956 samples:
anchor positive type string string details - min: 10 tokens
- mean: 23.14 tokens
- max: 85 tokens
- min: 6 tokens
- mean: 57.2 tokens
- max: 135 tokens
- Samples:
anchor positive Can I get a preventive health check-up covered under my insurance, and if yes, is there a limit to it?
by the Medical Practitioner.
vii. The Deductible shall not be applicable on this bene�t.
Stay Fit Health Check Up
The Insured may avail a health check-up, only for Preventive
Test, up to a limit speci�ed in the Policy Schedule, providedWhich claims are excluded if they don't follow the Transplantation of Human Organs Amendment Bill 2011?
4 CIN: U66010PN2000PLC015329, UIN: BAJHLIP23069V032223
Specific exclusions:
1. Claims which have NOT been admitted under Medical expenses section
2. Claims not in compliance with THE TRANSPLANTATION OF HUMAN ORGANS (AMENDMENT) BILL, 2011Will the insurance pay for lawful abortion and related hospital stays?
ii. We will also cover expenses towards lawful medical termination of pregnancy during the Policy period.
iii. In patient Hospitalization Expenses of pre-natal and post-natal hospitalization - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
mediclaim
- Dataset: mediclaim at 943cab1
- Size: 956 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 956 samples:
anchor positive type string string details - min: 10 tokens
- mean: 22.4 tokens
- max: 62 tokens
- min: 6 tokens
- mean: 56.76 tokens
- max: 133 tokens
- Samples:
anchor positive Is there any refund for medical exams if I get a policy and it's accepted?
• If pre-policy checkup is conducted, 50% of the medical tests charges would be reimbursed, subject to acceptance
of proposal and policy issuance.
Age of the person
to be insured
Sum Insured Medical ExaminationAre there any exclusions for coverage of substance abuse treatment or its consequences?
are payable but not the complete claim.
12. T reatment for Alcoholism, drug or substance abuse or any addictive condition and consequences thereof.
(Excl12)Can you tell me about the medical bills I might have within 90 days after being discharged?
CIN: U66010PN2000PLC015329, UIN:BAJHLIP23069V032223 3
c. Post-hospitalisation expenses
The medical expenses incurred in the 90 days immediately after you were discharged, provided that: - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 40lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 40max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|---|
-1 | -1 | - | - | 0.4723 | 0.4748 | 0.5015 | 0.4589 | 0.3867 |
1.0 | 2 | - | 1.5925 | 0.4821 | 0.4846 | 0.5122 | 0.4604 | 0.3971 |
2.0 | 4 | - | 1.5925 | 0.4821 | 0.4846 | 0.5122 | 0.4604 | 0.3971 |
3.0 | 6 | - | 1.0402 | 0.5431 | 0.5468 | 0.5530 | 0.5009 | 0.4435 |
4.0 | 8 | - | 0.7900 | 0.5876 | 0.5926 | 0.6075 | 0.5484 | 0.4726 |
5.0 | 10 | 33.0646 | 0.6077 | 0.5890 | 0.6039 | 0.6270 | 0.5779 | 0.5072 |
6.0 | 12 | - | 0.5213 | 0.6357 | 0.6379 | 0.6522 | 0.5966 | 0.5417 |
7.0 | 14 | - | 0.4735 | 0.6425 | 0.6395 | 0.6286 | 0.5995 | 0.5795 |
8.0 | 16 | - | 0.4416 | 0.6253 | 0.6387 | 0.6227 | 0.5903 | 0.5738 |
9.0 | 18 | - | 0.4236 | 0.6303 | 0.6489 | 0.6387 | 0.6179 | 0.5670 |
10.0 | 20 | 8.8456 | 0.4115 | 0.6465 | 0.6519 | 0.6369 | 0.6112 | 0.572 |
11.0 | 22 | - | 0.4059 | 0.6447 | 0.6270 | 0.6318 | 0.6169 | 0.5950 |
12.0 | 24 | - | 0.4036 | 0.6382 | 0.6318 | 0.6346 | 0.6063 | 0.6026 |
13.0 | 26 | - | 0.4022 | 0.6485 | 0.6410 | 0.6441 | 0.6163 | 0.5900 |
14.0 | 28 | - | 0.4022 | 0.6520 | 0.6426 | 0.6597 | 0.6225 | 0.6001 |
15.0 | 30 | 4.4602 | 0.4033 | 0.6507 | 0.6363 | 0.6576 | 0.6217 | 0.6134 |
16.0 | 32 | - | 0.4047 | 0.6530 | 0.6389 | 0.6609 | 0.6350 | 0.6068 |
17.0 | 34 | - | 0.4058 | 0.6501 | 0.6344 | 0.6501 | 0.6281 | 0.5997 |
18.0 | 36 | - | 0.4067 | 0.6509 | 0.6333 | 0.6553 | 0.6360 | 0.6050 |
19.0 | 38 | - | 0.4070 | 0.6561 | 0.6331 | 0.6602 | 0.6397 | 0.6051 |
20.0 | 40 | 3.9605 | 0.4071 | 0.6498 | 0.6294 | 0.6397 | 0.6229 | 0.5922 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}