File size: 35,269 Bytes
110a511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:956
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/multi-qa-mpnet-base-cos-v1
widget:
- source_sentence: Does my insurance policy exclude medical costs for the first 30
    days' illness, but cover accident-related claims?
  sentences:
  - "any notice for renewal. \nb.  Renewal shall not be denied on the ground that\
    \ the insured person had made a claim or claims in the preceding \npolicy years."
  - '• Minimum entry age for proposer/ spouse/ dependent parents  - 18 years

    • Maximum Entry Age for proposer/ spouse/ dependent parents - 80 years

    • Minimum Entry age for dependent Children - 3 months

    • Maximum Entry Age for dependent Children -  25 years'
  - "a.  Expenses related to the treatment of any illness within 30 days from the\
    \ first policy commencement date shall \nbe excluded except claims arising due\
    \ to an accident, provided the same are covered."
- source_sentence: I have a pre-authorization for a procedure, what should I bring
    along when I get admitted to the hospital to avoid paying the medical bills?
  sentences:
  - "Obesity/ Weight Control \nChange of Gender treatments\nCosmetic or plastic\
    \ Surgery \nHazardous or Adventure sports \nBreach of law \nExcluded Providers\n\
    Substance Abuse and Alcohol \nWellness and Rejuvenation \nDietary Supplements\
    \ & \nSubstances"
  - '56-60 11,950 12,760 7,874 18,887 13,573 9,243 17,848 13,162 21,348 16,437 11,308
    24,345 18,177 13,206 35,360 29,906 24,726

    61-65 14,352 15,319 9,444 22,688 16,298 11,089 21,442 15,804 25,652 19,744 13,571
    29,256 21,833 15,852 42,495 35,932 29,699'
  - "specified must be produced to the Network Hospital identified in the pre-authorization\
    \ letter at the time of Y our \nadmission to the same.\niii.  If the procedure\
    \ above is followed, Y ou will not be required to directly pay for the Medical\
    \ Expenses above"
- source_sentence: Can you tell me the range of insured sum for a 4 member family
    in INR?
  sentences:
  - "i. Obesity-related cardiomyopathy\n   ii. Coronary heart disease\n   iii. Severe\
    \ Sleep Apnea\n   iv. Uncontrolled T ype2 Diabetes\n7.  Change-of-gender treatments:\
    \ (Excl07)"
  - 'Age/

    deduc-

    tible

    200000 200000 300000 200000 300000 500000 300000 500000 300000 500000 1000000
    300000 500000 1000000 300000 500000 1000000

    21-25 5,010 5,361 3,326 7,906 5,695 3,899 7,466 5,523 8,918 6,882 4,759 10,163
    7,610 5,553 14,756 12,498 10,354'
  - "CIN: U66010PN2000PLC015329, UIN:BAJHLIP23069V032223    13\nFAMILY SIZE: 4 MEMBER\n\
    Sum \nInsured \n(in INR)\n300000 500000 1000000 1500000 2000000 2500000 5000000\n\
    Age/\ndeduc-\ntible"
- source_sentence: Does IRDAI have rules on portability that let someone who's been
    continuously insured under any health policy from an Indian general or health
    insurer carry over waiting period benefits?
  sentences:
  - '◼ WHAT ARE THE EXCLUSIONS AND WAITING PERIOD UNDER THE POLICY?

    I. Waiting Period

    A. Pre-Existing Diseases - Code- Excl01

    a.  Expenses related to the treatment of a pre-existing Disease (PED) and its
    direct complications shall be excluded'
  - "has been continuously covered without any lapses under any health insurance policy\
    \ with an Indian General/\nHealth insurer, the proposed insured person will get\
    \ the accrued continuity benefits in waiting periods as per \nIRDAI guidelines\
    \ on portability."
  - "Cumulative Bonus:\n For every claim free policy year, there will be increase\
    \ of 10% of \nthe Sum Insured, maximum up to 100%. If a claim is made in any \n\
    particular Policy Year, the Cumulative Bonus accrued shall not be \nreduced.\n\
    SBIG Health Super T op-Up,"
- source_sentence: what kind of coverage is provided by insurance for medical expenses
    that go beyond the normal amount?
  sentences:
  - "Enhances any existing health policy from any insurance provider \n- corporate\
    \ or personal"
  - 'Age/

    deduc-

    tible

    200000 200000 300000 200000 300000 500000 300000 500000 300000 500000 1000000
    300000 500000 1000000 300000 500000 1000000

    21-25 6,544 7,011 4,345 10,389 7,490 5,127 9,839 7,283 11,767 9,087 6,289 13,419
    10,054 7,343 19,518 16,543 13,717'
  - "health insurance cover and provides wider health protection for you and your\
    \ family. In case of higher expenses \ndue to illness or accidents, Extra Care\
    \ Plus policy takes care of the additional expenses. It is important to consider"
datasets:
- surajvbangera/mediclaim
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-cos-v1
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.3020833333333333
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8020833333333334
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.875
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9583333333333334
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3020833333333333
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2673611111111111
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17499999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09583333333333333
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3020833333333333
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8020833333333334
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.875
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9583333333333334
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6497808285407043
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5484209656084658
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5512795209742883
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.28125
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.78125
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.875
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9479166666666666
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.28125
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2604166666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17499999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09479166666666665
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.28125
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.78125
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.875
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9479166666666666
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6294431516700937
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5250578703703704
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5287000615125614
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.3020833333333333
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7916666666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8854166666666666
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9375
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3020833333333333
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2638888888888889
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1770833333333333
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09375
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3020833333333333
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7916666666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8854166666666666
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9375
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6396822227743622
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5409846230158731
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5445532958553793
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.2708333333333333
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.78125
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.84375
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9479166666666666
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2708333333333333
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2604166666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16874999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09479166666666666
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2708333333333333
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.78125
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.84375
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9479166666666666
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6229142362169651
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5167080026455027
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5187267142104471
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.25
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7291666666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8333333333333334
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9166666666666666
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.25
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24305555555555558
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16666666666666666
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09166666666666666
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.25
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7291666666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8333333333333334
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9166666666666666
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5921613565527261
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.486338458994709
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.49077409326175775
      name: Cosine Map@100
---

# SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-cos-v1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1) on the [mediclaim](https://huggingface.co/datasets/surajvbangera/mediclaim) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-mpnet-base-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1) <!-- at revision 822dbc9732879fe45b5d79fdb372f2ccec4c76b5 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [mediclaim](https://huggingface.co/datasets/surajvbangera/mediclaim)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("surajvbangera/mediclaim_embedding")
# Run inference
sentences = [
    'what kind of coverage is provided by insurance for medical expenses that go beyond the normal amount?',
    'health insurance cover and provides wider health protection for you and your family. In case of higher expenses \ndue to illness or accidents, Extra Care Plus policy takes care of the additional expenses. It is important to consider',
    'Age/\ndeduc-\ntible\n200000 200000 300000 200000 300000 500000 300000 500000 300000 500000 1000000 300000 500000 1000000 300000 500000 1000000\n21-25 6,544 7,011 4,345 10,389 7,490 5,127 9,839 7,283 11,767 9,087 6,289 13,419 10,054 7,343 19,518 16,543 13,717',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.3021     | 0.2812     | 0.3021     | 0.2708     | 0.25       |
| cosine_accuracy@3   | 0.8021     | 0.7812     | 0.7917     | 0.7812     | 0.7292     |
| cosine_accuracy@5   | 0.875      | 0.875      | 0.8854     | 0.8438     | 0.8333     |
| cosine_accuracy@10  | 0.9583     | 0.9479     | 0.9375     | 0.9479     | 0.9167     |
| cosine_precision@1  | 0.3021     | 0.2812     | 0.3021     | 0.2708     | 0.25       |
| cosine_precision@3  | 0.2674     | 0.2604     | 0.2639     | 0.2604     | 0.2431     |
| cosine_precision@5  | 0.175      | 0.175      | 0.1771     | 0.1687     | 0.1667     |
| cosine_precision@10 | 0.0958     | 0.0948     | 0.0938     | 0.0948     | 0.0917     |
| cosine_recall@1     | 0.3021     | 0.2812     | 0.3021     | 0.2708     | 0.25       |
| cosine_recall@3     | 0.8021     | 0.7812     | 0.7917     | 0.7812     | 0.7292     |
| cosine_recall@5     | 0.875      | 0.875      | 0.8854     | 0.8438     | 0.8333     |
| cosine_recall@10    | 0.9583     | 0.9479     | 0.9375     | 0.9479     | 0.9167     |
| **cosine_ndcg@10**  | **0.6498** | **0.6294** | **0.6397** | **0.6229** | **0.5922** |
| cosine_mrr@10       | 0.5484     | 0.5251     | 0.541      | 0.5167     | 0.4863     |
| cosine_map@100      | 0.5513     | 0.5287     | 0.5446     | 0.5187     | 0.4908     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### mediclaim

* Dataset: [mediclaim](https://huggingface.co/datasets/surajvbangera/mediclaim) at [943cab1](https://huggingface.co/datasets/surajvbangera/mediclaim/tree/943cab115f9a1d649d8a886fb35668e54ad0e1f7)
* Size: 956 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 956 samples:
  |         | anchor                                                                             | positive                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 10 tokens</li><li>mean: 23.14 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 57.2 tokens</li><li>max: 135 tokens</li></ul> |
* Samples:
  | anchor                                                                                                               | positive                                                                                                                                                                                                                                                                  |
  |:---------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Can I get a preventive health check-up covered under my insurance, and if yes, is there a limit to it?</code>  | <code>by the Medical Practitioner.<br> vii. The Deductible shall not be applicable on this bene�t.<br> Stay Fit Health Check Up<br> The Insured may avail a health check-up, only for Preventive <br>Test, up to a limit speci�ed in the Policy Schedule, provided</code> |
  | <code>Which claims are excluded if they don't follow the Transplantation of Human Organs Amendment Bill 2011?</code> | <code>4    CIN: U66010PN2000PLC015329, UIN: BAJHLIP23069V032223<br> Specific exclusions:<br> 1. Claims which have NOT been admitted under Medical expenses section<br> 2. Claims not in compliance with THE TRANSPLANTATION OF HUMAN ORGANS (AMENDMENT) BILL, 2011</code> |
  | <code>Will the insurance pay for lawful abortion and related hospital stays?</code>                                  | <code>ii.   We will also cover expenses towards lawful medical termination of pregnancy during the Policy period.<br> iii.  In patient Hospitalization Expenses of pre-natal and post-natal hospitalization</code>                                                        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### mediclaim

* Dataset: [mediclaim](https://huggingface.co/datasets/surajvbangera/mediclaim) at [943cab1](https://huggingface.co/datasets/surajvbangera/mediclaim/tree/943cab115f9a1d649d8a886fb35668e54ad0e1f7)
* Size: 956 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 956 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 22.4 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 56.76 tokens</li><li>max: 133 tokens</li></ul> |
* Samples:
  | anchor                                                                                                   | positive                                                                                                                                                                                                                                       |
  |:---------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Is there any refund for medical exams if I get a policy and it's accepted?</code>                  | <code>•  If pre-policy checkup is conducted, 50% of the medical tests charges would be reimbursed, subject to acceptance <br>of proposal and policy issuance.<br>Age of the person <br>to be insured<br>Sum Insured Medical Examination</code> |
  | <code>Are there any exclusions for coverage of substance abuse treatment or its consequences?</code>     | <code>are payable but not the complete claim. <br>12.  T reatment for Alcoholism, drug or substance abuse or any addictive condition and consequences thereof. <br>(Excl12)</code>                                                             |
  | <code>Can you tell me about the medical bills I might have within 90 days after being discharged?</code> | <code>CIN: U66010PN2000PLC015329, UIN:BAJHLIP23069V032223    3<br> c.  Post-hospitalisation expenses<br>  The medical expenses incurred in the 90 days immediately after you were discharged, provided that:</code>                            |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 40
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 40
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch    | Step   | Training Loss | Validation Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:--------:|:------:|:-------------:|:---------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| -1       | -1     | -             | -               | 0.4723                 | 0.4748                 | 0.5015                 | 0.4589                 | 0.3867                |
| 1.0      | 2      | -             | 1.5925          | 0.4821                 | 0.4846                 | 0.5122                 | 0.4604                 | 0.3971                |
| 2.0      | 4      | -             | 1.5925          | 0.4821                 | 0.4846                 | 0.5122                 | 0.4604                 | 0.3971                |
| 3.0      | 6      | -             | 1.0402          | 0.5431                 | 0.5468                 | 0.5530                 | 0.5009                 | 0.4435                |
| 4.0      | 8      | -             | 0.7900          | 0.5876                 | 0.5926                 | 0.6075                 | 0.5484                 | 0.4726                |
| 5.0      | 10     | 33.0646       | 0.6077          | 0.5890                 | 0.6039                 | 0.6270                 | 0.5779                 | 0.5072                |
| 6.0      | 12     | -             | 0.5213          | 0.6357                 | 0.6379                 | 0.6522                 | 0.5966                 | 0.5417                |
| 7.0      | 14     | -             | 0.4735          | 0.6425                 | 0.6395                 | 0.6286                 | 0.5995                 | 0.5795                |
| 8.0      | 16     | -             | 0.4416          | 0.6253                 | 0.6387                 | 0.6227                 | 0.5903                 | 0.5738                |
| 9.0      | 18     | -             | 0.4236          | 0.6303                 | 0.6489                 | 0.6387                 | 0.6179                 | 0.5670                |
| **10.0** | **20** | **8.8456**    | **0.4115**      | **0.6465**             | **0.6519**             | **0.6369**             | **0.6112**             | **0.572**             |
| 11.0     | 22     | -             | 0.4059          | 0.6447                 | 0.6270                 | 0.6318                 | 0.6169                 | 0.5950                |
| 12.0     | 24     | -             | 0.4036          | 0.6382                 | 0.6318                 | 0.6346                 | 0.6063                 | 0.6026                |
| 13.0     | 26     | -             | 0.4022          | 0.6485                 | 0.6410                 | 0.6441                 | 0.6163                 | 0.5900                |
| 14.0     | 28     | -             | 0.4022          | 0.6520                 | 0.6426                 | 0.6597                 | 0.6225                 | 0.6001                |
| 15.0     | 30     | 4.4602        | 0.4033          | 0.6507                 | 0.6363                 | 0.6576                 | 0.6217                 | 0.6134                |
| 16.0     | 32     | -             | 0.4047          | 0.6530                 | 0.6389                 | 0.6609                 | 0.6350                 | 0.6068                |
| 17.0     | 34     | -             | 0.4058          | 0.6501                 | 0.6344                 | 0.6501                 | 0.6281                 | 0.5997                |
| 18.0     | 36     | -             | 0.4067          | 0.6509                 | 0.6333                 | 0.6553                 | 0.6360                 | 0.6050                |
| 19.0     | 38     | -             | 0.4070          | 0.6561                 | 0.6331                 | 0.6602                 | 0.6397                 | 0.6051                |
| 20.0     | 40     | 3.9605        | 0.4071          | 0.6498                 | 0.6294                 | 0.6397                 | 0.6229                 | 0.5922                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->