|
--- |
|
library_name: transformers |
|
language: |
|
- am |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_17_0 |
|
- surafelabebe/fleurs_am |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Am - Surafel Worku |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 17.0 |
|
type: mozilla-foundation/common_voice_17_0 |
|
args: 'config: am, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 50.96566523605151 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Amharic |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [Common Voice 17.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0/viewer/am?views%5B%5D=am_train) and [surafelabebe/fleurs_am](https://huggingface.co/datasets/surafelabebe/fleurs_am) (a subset of [google/fleurs](https://huggingface.co/datasets/google/fleurs)) datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4352 |
|
- Wer: 50.9657 |
|
|
|
## Model description |
|
|
|
The model was trained for 10 hours on T4 GPU. Training results indicate potential overfitting. Future improvements will focus on mitigating this by incorporating a larger dataset, extended training epochs, and dropout regularization. |
|
|
|
|
|
### Usage |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline(model="surafelabebe/whisper-small-am") |
|
|
|
text = pipe("sample.wav")["text"] # change to "your audio file name" |
|
|
|
print(text) |
|
``` |
|
|
|
| Input | Output Transcript | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------:| |
|
| <audio controls><source src="https://huggingface.co/spaces/surafelabebe/audio_samples/resolve/main/audio_0.wav" type="audio/wav"></audio> | አቶ ቦጋለ መብራቱ ወይዘሮ ውድነሽ በታሙም ባገቡ በሁለተኛው አመት መጫረሻ ወንድሪክ ሰውለደላቸውን | |
|
| <audio controls><source src="https://huggingface.co/spaces/surafelabebe/audio_samples/resolve/main/audio_1.wav" type="audio/wav"></audio> | ከሰብ ለሚሁን ከወይዘሮ ትሩ ወይም ከአብት ሺሰር ጋር ልዩሩ ጉዳይ ኖሮት አይደለም | |
|
|
|
## Training procedure |
|
|
|
The fine-tuning process followed a similar procedure to that described in [this](https://huggingface.co/blog/fine-tune-whisper) blog post. |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 4000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:-------:| |
|
| 0.0108 | 9.6154 | 1000 | 0.3446 | 54.9759 | |
|
| 0.0009 | 19.2308 | 2000 | 0.4052 | 51.7570 | |
|
| 0.0001 | 28.8462 | 3000 | 0.4277 | 50.9388 | |
|
| 0.0001 | 38.4615 | 4000 | 0.4352 | 50.9657 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |