--- library_name: transformers language: - am license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 - surafelabebe/fleurs_am metrics: - wer model-index: - name: Whisper Small Am - Surafel Worku results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 args: 'config: am, split: test' metrics: - name: Wer type: wer value: 50.96566523605151 --- # Whisper Small Amharic This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [Common Voice 17.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0/viewer/am?views%5B%5D=am_train) and [surafelabebe/fleurs_am](https://huggingface.co/datasets/surafelabebe/fleurs_am) (a subset of [google/fleurs](https://huggingface.co/datasets/google/fleurs)) datasets. It achieves the following results on the evaluation set: - Loss: 0.4352 - Wer: 50.9657 ## Model description The model was trained for 10 hours on T4 GPU. Training results indicate potential overfitting. Future improvements will focus on mitigating this by incorporating a larger dataset, extended training epochs, and dropout regularization. ### Usage ```python from transformers import pipeline pipe = pipeline(model="surafelabebe/whisper-small-am") text = pipe("sample.wav")["text"] # change to "your audio file name" print(text) ``` | Input | Output Transcript | |:----------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------:| | | አቶ ቦጋለ መብራቱ ወይዘሮ ውድነሽ በታሙም ባገቡ በሁለተኛው አመት መጫረሻ ወንድሪክ ሰውለደላቸውን | | | ከሰብ ለሚሁን ከወይዘሮ ትሩ ወይም ከአብት ሺሰር ጋር ልዩሩ ጉዳይ ኖሮት አይደለም | ## Training procedure The fine-tuning process followed a similar procedure to that described in [this](https://huggingface.co/blog/fine-tune-whisper) blog post. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0108 | 9.6154 | 1000 | 0.3446 | 54.9759 | | 0.0009 | 19.2308 | 2000 | 0.4052 | 51.7570 | | 0.0001 | 28.8462 | 3000 | 0.4277 | 50.9388 | | 0.0001 | 38.4615 | 4000 | 0.4352 | 50.9657 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0