metadata
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC1_1_Supertypes_xlm-roberta-large
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cnec
type: cnec
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.8413379073756432
- name: Recall
type: recall
value: 0.8802153432032301
- name: F1
type: f1
value: 0.860337645253234
- name: Accuracy
type: accuracy
value: 0.9612787384363168
CNEC1_1_Supertypes_xlm-roberta-large
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.2313
- Precision: 0.8413
- Recall: 0.8802
- F1: 0.8603
- Accuracy: 0.9613
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 500
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.7584 | 0.85 | 500 | 0.2266 | 0.6844 | 0.8044 | 0.7395 | 0.9401 |
0.2143 | 1.7 | 1000 | 0.2301 | 0.7516 | 0.8268 | 0.7874 | 0.9447 |
0.1472 | 2.56 | 1500 | 0.2024 | 0.7634 | 0.8452 | 0.8022 | 0.9535 |
0.1109 | 3.41 | 2000 | 0.1845 | 0.7719 | 0.8686 | 0.8174 | 0.9571 |
0.0843 | 4.26 | 2500 | 0.1853 | 0.8025 | 0.8694 | 0.8346 | 0.9585 |
0.0576 | 5.11 | 3000 | 0.1976 | 0.8235 | 0.8896 | 0.8553 | 0.9599 |
0.0403 | 5.96 | 3500 | 0.2000 | 0.8308 | 0.8766 | 0.8531 | 0.9596 |
0.025 | 6.81 | 4000 | 0.2242 | 0.8304 | 0.8811 | 0.8550 | 0.9602 |
0.0206 | 7.67 | 4500 | 0.2313 | 0.8413 | 0.8802 | 0.8603 | 0.9613 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0