--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8413379073756432 - name: Recall type: recall value: 0.8802153432032301 - name: F1 type: f1 value: 0.860337645253234 - name: Accuracy type: accuracy value: 0.9612787384363168 --- # CNEC1_1_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2313 - Precision: 0.8413 - Recall: 0.8802 - F1: 0.8603 - Accuracy: 0.9613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7584 | 0.85 | 500 | 0.2266 | 0.6844 | 0.8044 | 0.7395 | 0.9401 | | 0.2143 | 1.7 | 1000 | 0.2301 | 0.7516 | 0.8268 | 0.7874 | 0.9447 | | 0.1472 | 2.56 | 1500 | 0.2024 | 0.7634 | 0.8452 | 0.8022 | 0.9535 | | 0.1109 | 3.41 | 2000 | 0.1845 | 0.7719 | 0.8686 | 0.8174 | 0.9571 | | 0.0843 | 4.26 | 2500 | 0.1853 | 0.8025 | 0.8694 | 0.8346 | 0.9585 | | 0.0576 | 5.11 | 3000 | 0.1976 | 0.8235 | 0.8896 | 0.8553 | 0.9599 | | 0.0403 | 5.96 | 3500 | 0.2000 | 0.8308 | 0.8766 | 0.8531 | 0.9596 | | 0.025 | 6.81 | 4000 | 0.2242 | 0.8304 | 0.8811 | 0.8550 | 0.9602 | | 0.0206 | 7.67 | 4500 | 0.2313 | 0.8413 | 0.8802 | 0.8603 | 0.9613 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0