c4ai / docs /md_v2 /advanced /content-processing.md
amaye15
test
03c0888
# Content Processing
Crawl4AI provides powerful content processing capabilities that help you extract clean, relevant content from web pages. This guide covers content cleaning, media handling, link analysis, and metadata extraction.
## Media Processing
Crawl4AI provides comprehensive media extraction and analysis capabilities. It automatically detects and processes various types of media elements while maintaining their context and relevance.
### Image Processing
The library handles various image scenarios, including:
- Regular images
- Lazy-loaded images
- Background images
- Responsive images
- Image metadata and context
```python
from crawl4ai.async_configs import CrawlerRunConfig
config = CrawlerRunConfig()
result = await crawler.arun(url="https://example.com", config=config)
for image in result.media["images"]:
# Each image includes rich metadata
print(f"Source: {image['src']}")
print(f"Alt text: {image['alt']}")
print(f"Description: {image['desc']}")
print(f"Context: {image['context']}") # Surrounding text
print(f"Relevance score: {image['score']}") # 0-10 score
```
### Handling Lazy-Loaded Content
Crawl4AI already handles lazy loading for media elements. You can customize the wait time for lazy-loaded content with `CrawlerRunConfig`:
```python
config = CrawlerRunConfig(
wait_for="css:img[data-src]", # Wait for lazy images
delay_before_return_html=2.0 # Additional wait time
)
result = await crawler.arun(url="https://example.com", config=config)
```
### Video and Audio Content
The library extracts video and audio elements with their metadata:
```python
from crawl4ai.async_configs import CrawlerRunConfig
config = CrawlerRunConfig()
result = await crawler.arun(url="https://example.com", config=config)
# Process videos
for video in result.media["videos"]:
print(f"Video source: {video['src']}")
print(f"Type: {video['type']}")
print(f"Duration: {video.get('duration')}")
print(f"Thumbnail: {video.get('poster')}")
# Process audio
for audio in result.media["audios"]:
print(f"Audio source: {audio['src']}")
print(f"Type: {audio['type']}")
print(f"Duration: {audio.get('duration')}")
```
## Link Analysis
Crawl4AI provides sophisticated link analysis capabilities, helping you understand the relationship between pages and identify important navigation patterns.
### Link Classification
The library automatically categorizes links into:
- Internal links (same domain)
- External links (different domains)
- Social media links
- Navigation links
- Content links
```python
from crawl4ai.async_configs import CrawlerRunConfig
config = CrawlerRunConfig()
result = await crawler.arun(url="https://example.com", config=config)
# Analyze internal links
for link in result.links["internal"]:
print(f"Internal: {link['href']}")
print(f"Link text: {link['text']}")
print(f"Context: {link['context']}") # Surrounding text
print(f"Type: {link['type']}") # nav, content, etc.
# Analyze external links
for link in result.links["external"]:
print(f"External: {link['href']}")
print(f"Domain: {link['domain']}")
print(f"Type: {link['type']}")
```
### Smart Link Filtering
Control which links are included in the results with `CrawlerRunConfig`:
```python
config = CrawlerRunConfig(
exclude_external_links=True, # Remove external links
exclude_social_media_links=True, # Remove social media links
exclude_social_media_domains=[ # Custom social media domains
"facebook.com", "twitter.com", "instagram.com"
],
exclude_domains=["ads.example.com"] # Exclude specific domains
)
result = await crawler.arun(url="https://example.com", config=config)
```
## Metadata Extraction
Crawl4AI automatically extracts and processes page metadata, providing valuable information about the content:
```python
from crawl4ai.async_configs import CrawlerRunConfig
config = CrawlerRunConfig()
result = await crawler.arun(url="https://example.com", config=config)
metadata = result.metadata
print(f"Title: {metadata['title']}")
print(f"Description: {metadata['description']}")
print(f"Keywords: {metadata['keywords']}")
print(f"Author: {metadata['author']}")
print(f"Published Date: {metadata['published_date']}")
print(f"Modified Date: {metadata['modified_date']}")
print(f"Language: {metadata['language']}")
```