# Content Processing Crawl4AI provides powerful content processing capabilities that help you extract clean, relevant content from web pages. This guide covers content cleaning, media handling, link analysis, and metadata extraction. ## Media Processing Crawl4AI provides comprehensive media extraction and analysis capabilities. It automatically detects and processes various types of media elements while maintaining their context and relevance. ### Image Processing The library handles various image scenarios, including: - Regular images - Lazy-loaded images - Background images - Responsive images - Image metadata and context ```python from crawl4ai.async_configs import CrawlerRunConfig config = CrawlerRunConfig() result = await crawler.arun(url="https://example.com", config=config) for image in result.media["images"]: # Each image includes rich metadata print(f"Source: {image['src']}") print(f"Alt text: {image['alt']}") print(f"Description: {image['desc']}") print(f"Context: {image['context']}") # Surrounding text print(f"Relevance score: {image['score']}") # 0-10 score ``` ### Handling Lazy-Loaded Content Crawl4AI already handles lazy loading for media elements. You can customize the wait time for lazy-loaded content with `CrawlerRunConfig`: ```python config = CrawlerRunConfig( wait_for="css:img[data-src]", # Wait for lazy images delay_before_return_html=2.0 # Additional wait time ) result = await crawler.arun(url="https://example.com", config=config) ``` ### Video and Audio Content The library extracts video and audio elements with their metadata: ```python from crawl4ai.async_configs import CrawlerRunConfig config = CrawlerRunConfig() result = await crawler.arun(url="https://example.com", config=config) # Process videos for video in result.media["videos"]: print(f"Video source: {video['src']}") print(f"Type: {video['type']}") print(f"Duration: {video.get('duration')}") print(f"Thumbnail: {video.get('poster')}") # Process audio for audio in result.media["audios"]: print(f"Audio source: {audio['src']}") print(f"Type: {audio['type']}") print(f"Duration: {audio.get('duration')}") ``` ## Link Analysis Crawl4AI provides sophisticated link analysis capabilities, helping you understand the relationship between pages and identify important navigation patterns. ### Link Classification The library automatically categorizes links into: - Internal links (same domain) - External links (different domains) - Social media links - Navigation links - Content links ```python from crawl4ai.async_configs import CrawlerRunConfig config = CrawlerRunConfig() result = await crawler.arun(url="https://example.com", config=config) # Analyze internal links for link in result.links["internal"]: print(f"Internal: {link['href']}") print(f"Link text: {link['text']}") print(f"Context: {link['context']}") # Surrounding text print(f"Type: {link['type']}") # nav, content, etc. # Analyze external links for link in result.links["external"]: print(f"External: {link['href']}") print(f"Domain: {link['domain']}") print(f"Type: {link['type']}") ``` ### Smart Link Filtering Control which links are included in the results with `CrawlerRunConfig`: ```python config = CrawlerRunConfig( exclude_external_links=True, # Remove external links exclude_social_media_links=True, # Remove social media links exclude_social_media_domains=[ # Custom social media domains "facebook.com", "twitter.com", "instagram.com" ], exclude_domains=["ads.example.com"] # Exclude specific domains ) result = await crawler.arun(url="https://example.com", config=config) ``` ## Metadata Extraction Crawl4AI automatically extracts and processes page metadata, providing valuable information about the content: ```python from crawl4ai.async_configs import CrawlerRunConfig config = CrawlerRunConfig() result = await crawler.arun(url="https://example.com", config=config) metadata = result.metadata print(f"Title: {metadata['title']}") print(f"Description: {metadata['description']}") print(f"Keywords: {metadata['keywords']}") print(f"Author: {metadata['author']}") print(f"Published Date: {metadata['published_date']}") print(f"Modified Date: {metadata['modified_date']}") print(f"Language: {metadata['language']}") ```