Nividia_nim / app.py
vensonaa's picture
Update app.py
d2fa584 verified
import streamlit as st
import os
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
from langchain_community.document_loaders import WebBaseLoader
from langchain.embeddings import OllamaEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain.chains import create_retrieval_chain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFDirectoryLoader
import time
from dotenv import load_dotenv
load_dotenv()
## load the Groq API key
os.environ['NVIDIA_API_KEY']=os.getenv("NVIDIA_API_KEY")
def vector_embedding():
if "vectors" not in st.session_state:
st.session_state.embeddings=NVIDIAEmbeddings()
st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
st.session_state.docs=st.session_state.loader.load() ## Document Loading
st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=700,chunk_overlap=50) ## Chunk Creation
st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:30]) #splitting
print("hEllo")
st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings
st.title("Nvidia NIM Demo")
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
prompt=ChatPromptTemplate.from_template(
"""
Answer the questions based on the provided context only.
Please provide the most accurate response based on the question
<context>
{context}
<context>
Questions:{input}
"""
)
prompt1=st.text_input("Enter Your Question From Documents")
if st.button("Documents Embedding"):
vector_embedding()
st.write("Vector Store DB Is Ready")
import time
if prompt1:
document_chain=create_stuff_documents_chain(llm,prompt)
retriever=st.session_state.vectors.as_retriever()
retrieval_chain=create_retrieval_chain(retriever,document_chain)
start=time.process_time()
response=retrieval_chain.invoke({'input':prompt1})
print("Response time :",time.process_time()-start)
st.write(response['answer'])
# With a streamlit expander
with st.expander("Document Similarity Search"):
# Find the relevant chunks
for i, doc in enumerate(response["context"]):
st.write(doc.page_content)
st.write("--------------------------------")