Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,76 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import os
|
3 |
-
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
|
4 |
-
from langchain_community.document_loaders import WebBaseLoader
|
5 |
-
from langchain.embeddings import OllamaEmbeddings
|
6 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
8 |
-
from langchain_core.prompts import ChatPromptTemplate
|
9 |
-
from langchain_core.output_parsers import StrOutputParser
|
10 |
-
from langchain.chains import create_retrieval_chain
|
11 |
-
from langchain_community.vectorstores import FAISS
|
12 |
-
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
13 |
-
import time
|
14 |
-
|
15 |
-
from dotenv import load_dotenv
|
16 |
-
load_dotenv()
|
17 |
-
|
18 |
-
## load the Groq API key
|
19 |
-
os.environ['NVIDIA_API_KEY']=os.getenv("NVIDIA_API_KEY")
|
20 |
-
|
21 |
-
def vector_embedding():
|
22 |
-
|
23 |
-
if "vectors" not in st.session_state:
|
24 |
-
|
25 |
-
st.session_state.embeddings=NVIDIAEmbeddings()
|
26 |
-
st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
|
27 |
-
st.session_state.docs=st.session_state.loader.load() ## Document Loading
|
28 |
-
st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=700,chunk_overlap=50) ## Chunk Creation
|
29 |
-
st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:30]) #splitting
|
30 |
-
print("hEllo")
|
31 |
-
st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings
|
32 |
-
|
33 |
-
|
34 |
-
st.title("Nvidia NIM Demo")
|
35 |
-
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
|
36 |
-
|
37 |
-
|
38 |
-
prompt=ChatPromptTemplate.from_template(
|
39 |
-
"""
|
40 |
-
Answer the questions based on the provided context only.
|
41 |
-
Please provide the most accurate response based on the question
|
42 |
-
<context>
|
43 |
-
{context}
|
44 |
-
<context>
|
45 |
-
Questions:{input}
|
46 |
-
|
47 |
-
"""
|
48 |
-
)
|
49 |
-
|
50 |
-
|
51 |
-
prompt1=st.text_input("Enter Your Question From
|
52 |
-
|
53 |
-
|
54 |
-
if st.button("Documents Embedding"):
|
55 |
-
vector_embedding()
|
56 |
-
st.write("Vector Store DB Is Ready")
|
57 |
-
|
58 |
-
import time
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
if prompt1:
|
63 |
-
document_chain=create_stuff_documents_chain(llm,prompt)
|
64 |
-
retriever=st.session_state.vectors.as_retriever()
|
65 |
-
retrieval_chain=create_retrieval_chain(retriever,document_chain)
|
66 |
-
start=time.process_time()
|
67 |
-
response=retrieval_chain.invoke({'input':prompt1})
|
68 |
-
print("Response time :",time.process_time()-start)
|
69 |
-
st.write(response['answer'])
|
70 |
-
|
71 |
-
# With a streamlit expander
|
72 |
-
with st.expander("Document Similarity Search"):
|
73 |
-
# Find the relevant chunks
|
74 |
-
for i, doc in enumerate(response["context"]):
|
75 |
-
st.write(doc.page_content)
|
76 |
-
st.write("--------------------------------")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
|
4 |
+
from langchain_community.document_loaders import WebBaseLoader
|
5 |
+
from langchain.embeddings import OllamaEmbeddings
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
8 |
+
from langchain_core.prompts import ChatPromptTemplate
|
9 |
+
from langchain_core.output_parsers import StrOutputParser
|
10 |
+
from langchain.chains import create_retrieval_chain
|
11 |
+
from langchain_community.vectorstores import FAISS
|
12 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
13 |
+
import time
|
14 |
+
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
## load the Groq API key
|
19 |
+
os.environ['NVIDIA_API_KEY']=os.getenv("NVIDIA_API_KEY")
|
20 |
+
|
21 |
+
def vector_embedding():
|
22 |
+
|
23 |
+
if "vectors" not in st.session_state:
|
24 |
+
|
25 |
+
st.session_state.embeddings=NVIDIAEmbeddings()
|
26 |
+
st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
|
27 |
+
st.session_state.docs=st.session_state.loader.load() ## Document Loading
|
28 |
+
st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=700,chunk_overlap=50) ## Chunk Creation
|
29 |
+
st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:30]) #splitting
|
30 |
+
print("hEllo")
|
31 |
+
st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings
|
32 |
+
|
33 |
+
|
34 |
+
st.title("Nvidia NIM Demo")
|
35 |
+
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
|
36 |
+
|
37 |
+
|
38 |
+
prompt=ChatPromptTemplate.from_template(
|
39 |
+
"""
|
40 |
+
Answer the questions based on the provided context only.
|
41 |
+
Please provide the most accurate response based on the question
|
42 |
+
<context>
|
43 |
+
{context}
|
44 |
+
<context>
|
45 |
+
Questions:{input}
|
46 |
+
|
47 |
+
"""
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
prompt1=st.text_input("Enter Your Question From Documents")
|
52 |
+
|
53 |
+
|
54 |
+
if st.button("Documents Embedding"):
|
55 |
+
vector_embedding()
|
56 |
+
st.write("Vector Store DB Is Ready")
|
57 |
+
|
58 |
+
import time
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
if prompt1:
|
63 |
+
document_chain=create_stuff_documents_chain(llm,prompt)
|
64 |
+
retriever=st.session_state.vectors.as_retriever()
|
65 |
+
retrieval_chain=create_retrieval_chain(retriever,document_chain)
|
66 |
+
start=time.process_time()
|
67 |
+
response=retrieval_chain.invoke({'input':prompt1})
|
68 |
+
print("Response time :",time.process_time()-start)
|
69 |
+
st.write(response['answer'])
|
70 |
+
|
71 |
+
# With a streamlit expander
|
72 |
+
with st.expander("Document Similarity Search"):
|
73 |
+
# Find the relevant chunks
|
74 |
+
for i, doc in enumerate(response["context"]):
|
75 |
+
st.write(doc.page_content)
|
76 |
+
st.write("--------------------------------")
|