File size: 2,613 Bytes
d2fa584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import streamlit as st
import os
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
from langchain_community.document_loaders import WebBaseLoader
from langchain.embeddings import OllamaEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain.chains import create_retrieval_chain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFDirectoryLoader
import time

from dotenv import load_dotenv
load_dotenv()

## load the Groq API key
os.environ['NVIDIA_API_KEY']=os.getenv("NVIDIA_API_KEY")

def vector_embedding():

    if "vectors" not in st.session_state:

        st.session_state.embeddings=NVIDIAEmbeddings()
        st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
        st.session_state.docs=st.session_state.loader.load() ## Document Loading
        st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=700,chunk_overlap=50) ## Chunk Creation
        st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:30]) #splitting
        print("hEllo")
        st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings


st.title("Nvidia NIM Demo")
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")


prompt=ChatPromptTemplate.from_template(
"""
Answer the questions based on the provided context only.
Please provide the most accurate response based on the question
<context>
{context}
<context>
Questions:{input}

"""
)


prompt1=st.text_input("Enter Your Question From Documents")


if st.button("Documents Embedding"):
    vector_embedding()
    st.write("Vector Store DB Is Ready")

import time



if prompt1:
    document_chain=create_stuff_documents_chain(llm,prompt)
    retriever=st.session_state.vectors.as_retriever()
    retrieval_chain=create_retrieval_chain(retriever,document_chain)
    start=time.process_time()
    response=retrieval_chain.invoke({'input':prompt1})
    print("Response time :",time.process_time()-start)
    st.write(response['answer'])

    # With a streamlit expander
    with st.expander("Document Similarity Search"):
        # Find the relevant chunks
        for i, doc in enumerate(response["context"]):
            st.write(doc.page_content)
            st.write("--------------------------------")