Spaces:
Build error
Build error
import gradio as gr | |
from rag_engine import RAGEngine | |
import torch | |
import os | |
import logging | |
import traceback | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
def safe_search(query, max_results): | |
"""Wrapper function to handle errors gracefully""" | |
try: | |
rag = RAGEngine() | |
results = rag.search_and_process(query, max_results) | |
if 'error' in results: | |
return f"# β Error\nSorry, an error occurred while processing your search:\n```\n{results['error']}\n```" | |
return format_results(results) | |
except Exception as e: | |
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
logger.error(error_msg) | |
return f"# β Error\nSorry, an error occurred while processing your search:\n```\n{str(e)}\n```" | |
def format_results(results): | |
"""Format search results for display""" | |
if not results or not results.get('results'): | |
return "# β οΈ No Results\nNo search results were found. Please try a different query." | |
formatted = f"# π Search Results\n\n" | |
# Add insights section | |
if 'insights' in results: | |
formatted += f"## π‘ Key Insights\n{results['insights']}\n\n" | |
# Add follow-up questions | |
if 'follow_up_questions' in results: | |
formatted += "## β Follow-up Questions\n" | |
for q in results['follow_up_questions']: | |
if q and q.strip(): | |
formatted += f"- {q.strip()}\n" | |
formatted += "\n" | |
# Add main results | |
if 'results' in results: | |
formatted += "## π Detailed Results\n\n" | |
for i, result in enumerate(results['results'], 1): | |
if not isinstance(result, dict): | |
continue | |
formatted += f"### {i}. " | |
if 'url' in result: | |
title = result.get('title', 'Untitled') | |
formatted += f"[{title}]({result['url']})\n" | |
if 'summary' in result: | |
formatted += f"\n{result['summary']}\n\n" | |
# Add similar chunks if available | |
if 'similar_chunks' in results: | |
formatted += "## π Related Content\n\n" | |
for i, chunk in enumerate(results['similar_chunks'], 1): | |
if not isinstance(chunk, dict): | |
continue | |
formatted += f"### Related {i}\n" | |
if 'metadata' in chunk: | |
meta = chunk['metadata'] | |
if 'title' in meta and 'url' in meta: | |
formatted += f"From [{meta['title']}]({meta['url']})\n" | |
if 'content' in chunk: | |
formatted += f"\n{chunk['content'][:200]}...\n\n" | |
return formatted | |
def create_demo(): | |
"""Create the Gradio interface""" | |
with gr.Blocks(title="Web Search + RAG") as demo: | |
gr.Markdown("# π Intelligent Web Search") | |
gr.Markdown("Search the web with AI-powered insights and analysis.") | |
with gr.Row(): | |
with gr.Column(): | |
query = gr.Textbox( | |
label="Search Query", | |
placeholder="Enter your search query...", | |
lines=2 | |
) | |
max_results = gr.Slider( | |
minimum=1, | |
maximum=10, | |
value=5, | |
step=1, | |
label="Number of Results" | |
) | |
search_button = gr.Button("π Search") | |
output = gr.Markdown() | |
search_button.click( | |
fn=safe_search, | |
inputs=[query, max_results], | |
outputs=output | |
) | |
gr.Examples( | |
examples=[ | |
["What is RAG in AI?", 5], | |
["Latest developments in quantum computing", 3], | |
["How does BERT work?", 5] | |
], | |
inputs=[query, max_results] | |
) | |
return demo | |
# Create the demo | |
demo = create_demo() | |
# Launch for Spaces | |
demo.launch() | |