fikird commited on
Commit
53a521c
Β·
1 Parent(s): d7b6953

Fix error handling and result formatting

Browse files
Files changed (2) hide show
  1. app.py +41 -70
  2. rag_engine.py +13 -9
app.py CHANGED
@@ -4,7 +4,6 @@ import torch
4
  import os
5
  import logging
6
  import traceback
7
- import asyncio
8
 
9
  # Configure logging
10
  logging.basicConfig(
@@ -17,7 +16,11 @@ def safe_search(query, max_results):
17
  """Wrapper function to handle errors gracefully"""
18
  try:
19
  rag = RAGEngine()
20
- results = asyncio.run(rag.search_and_process(query, max_results))
 
 
 
 
21
  return format_results(results)
22
  except Exception as e:
23
  error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
@@ -26,7 +29,7 @@ def safe_search(query, max_results):
26
 
27
  def format_results(results):
28
  """Format search results for display"""
29
- if not results:
30
  return "# ⚠️ No Results\nNo search results were found. Please try a different query."
31
 
32
  formatted = f"# πŸ” Search Results\n\n"
@@ -47,63 +50,39 @@ def format_results(results):
47
  if 'results' in results:
48
  formatted += "## πŸ“„ Detailed Results\n\n"
49
  for i, result in enumerate(results['results'], 1):
 
 
 
50
  formatted += f"### {i}. "
51
  if 'url' in result:
52
- formatted += f"[{result.get('title', 'Untitled')}]({result['url']})\n"
53
- else:
54
- formatted += f"{result.get('title', 'Untitled')}\n"
 
55
 
56
- if result.get('processed_content'):
57
- content = result['processed_content']
58
- if 'summary' in content:
59
- formatted += f"**Summary:** {content['summary']}\n\n"
60
- if content.get('metadata', {}).get('description'):
61
- formatted += f"**Description:** {content['metadata']['description']}\n\n"
62
- if content.get('content_type') == 'code':
63
- formatted += f"**Code Analysis:** {content.get('explanation', '')}\n\n"
64
- else:
65
- formatted += f"**Detailed Explanation:** {content.get('explanation', '')}\n\n"
66
-
67
- if 'snippet' in result:
68
- formatted += f"**Snippet:** {result['snippet']}\n\n"
69
- formatted += "---\n\n"
70
-
71
- # Add similar queries if available
72
- if results.get('similar_queries'):
73
- formatted += "## πŸ”„ Related Searches\n"
74
- for query in results['similar_queries']:
75
- if isinstance(query, dict) and 'query' in query:
76
- formatted += f"- {query['query']}\n"
77
- elif isinstance(query, str):
78
- formatted += f"- {query}\n"
79
 
80
  return formatted
81
 
82
  def create_demo():
83
  """Create the Gradio interface"""
84
 
85
- # Create cache directory
86
- os.makedirs(".cache", exist_ok=True)
87
-
88
- demo = gr.Blocks(
89
- title="AI-Powered Search Engine",
90
- css="""
91
- .gradio-container {max-width: 1200px !important}
92
- .markdown-text {font-size: 16px !important}
93
- """
94
- )
95
-
96
- with demo:
97
- gr.Markdown("""
98
- # πŸ” Intelligent Web Search Engine
99
-
100
- This advanced search engine uses AI to provide deep understanding of search results:
101
- - 🧠 Multi-model AI analysis
102
- - πŸ“Š Semantic search and caching
103
- - πŸ’‘ Automatic insights generation
104
- - ❓ Smart follow-up questions
105
- - πŸ”„ Related searches
106
- """)
107
 
108
  with gr.Row():
109
  with gr.Column():
@@ -113,21 +92,17 @@ def create_demo():
113
  lines=2
114
  )
115
  max_results = gr.Slider(
116
- minimum=3,
117
  maximum=10,
118
  value=5,
119
  step=1,
120
- label="Maximum Results"
121
  )
122
- search_btn = gr.Button("πŸ” Search", variant="primary")
123
-
124
- with gr.Column():
125
- output = gr.Markdown(
126
- label="Results",
127
- show_label=False
128
- )
129
 
130
- search_btn.click(
 
 
131
  fn=safe_search,
132
  inputs=[query, max_results],
133
  outputs=output
@@ -135,17 +110,13 @@ def create_demo():
135
 
136
  gr.Examples(
137
  examples=[
138
- ["What are the latest developments in quantum computing?", 5],
139
- ["How does Python's asyncio work? Show code examples", 5],
140
- ["Explain the transformer architecture in deep learning", 5],
141
- ["What are the environmental impacts of renewable energy?", 5]
142
  ],
143
- inputs=[query, max_results],
144
- outputs=output,
145
- fn=safe_search,
146
- cache_examples=True
147
  )
148
-
149
  return demo
150
 
151
  # Create the demo
 
4
  import os
5
  import logging
6
  import traceback
 
7
 
8
  # Configure logging
9
  logging.basicConfig(
 
16
  """Wrapper function to handle errors gracefully"""
17
  try:
18
  rag = RAGEngine()
19
+ results = rag.search_and_process(query, max_results)
20
+
21
+ if 'error' in results:
22
+ return f"# ❌ Error\nSorry, an error occurred while processing your search:\n```\n{results['error']}\n```"
23
+
24
  return format_results(results)
25
  except Exception as e:
26
  error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
 
29
 
30
  def format_results(results):
31
  """Format search results for display"""
32
+ if not results or not results.get('results'):
33
  return "# ⚠️ No Results\nNo search results were found. Please try a different query."
34
 
35
  formatted = f"# πŸ” Search Results\n\n"
 
50
  if 'results' in results:
51
  formatted += "## πŸ“„ Detailed Results\n\n"
52
  for i, result in enumerate(results['results'], 1):
53
+ if not isinstance(result, dict):
54
+ continue
55
+
56
  formatted += f"### {i}. "
57
  if 'url' in result:
58
+ title = result.get('title', 'Untitled')
59
+ formatted += f"[{title}]({result['url']})\n"
60
+ if 'summary' in result:
61
+ formatted += f"\n{result['summary']}\n\n"
62
 
63
+ # Add similar chunks if available
64
+ if 'similar_chunks' in results:
65
+ formatted += "## πŸ” Related Content\n\n"
66
+ for i, chunk in enumerate(results['similar_chunks'], 1):
67
+ if not isinstance(chunk, dict):
68
+ continue
69
+
70
+ formatted += f"### Related {i}\n"
71
+ if 'metadata' in chunk:
72
+ meta = chunk['metadata']
73
+ if 'title' in meta and 'url' in meta:
74
+ formatted += f"From [{meta['title']}]({meta['url']})\n"
75
+ if 'content' in chunk:
76
+ formatted += f"\n{chunk['content'][:200]}...\n\n"
 
 
 
 
 
 
 
 
 
77
 
78
  return formatted
79
 
80
  def create_demo():
81
  """Create the Gradio interface"""
82
 
83
+ with gr.Blocks(title="Web Search + RAG") as demo:
84
+ gr.Markdown("# πŸ” Intelligent Web Search")
85
+ gr.Markdown("Search the web with AI-powered insights and analysis.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
  with gr.Row():
88
  with gr.Column():
 
92
  lines=2
93
  )
94
  max_results = gr.Slider(
95
+ minimum=1,
96
  maximum=10,
97
  value=5,
98
  step=1,
99
+ label="Number of Results"
100
  )
101
+ search_button = gr.Button("πŸ” Search")
 
 
 
 
 
 
102
 
103
+ output = gr.Markdown()
104
+
105
+ search_button.click(
106
  fn=safe_search,
107
  inputs=[query, max_results],
108
  outputs=output
 
110
 
111
  gr.Examples(
112
  examples=[
113
+ ["What is RAG in AI?", 5],
114
+ ["Latest developments in quantum computing", 3],
115
+ ["How does BERT work?", 5]
 
116
  ],
117
+ inputs=[query, max_results]
 
 
 
118
  )
119
+
120
  return demo
121
 
122
  # Create the demo
rag_engine.py CHANGED
@@ -46,22 +46,26 @@ class RAGEngine:
46
  # Get web search results
47
  web_results = self.web_search.search(query, max_results)
48
 
 
 
 
49
  # Process and store new content
50
- for result in web_results['results']:
51
- if 'content' in result:
52
- self.process_and_store_content(
53
- result['content'],
54
- metadata={'url': result.get('url'), 'title': result.get('title')}
55
- )
 
56
 
57
- # Perform similarity search
58
  if self.vector_store:
59
  similar_docs = self.vector_store.similarity_search_with_score(
60
  query,
61
  k=similarity_k
62
  )
63
 
64
- # Add similarity results
65
  web_results['similar_chunks'] = [
66
  {
67
  'content': doc[0].page_content,
@@ -75,7 +79,7 @@ class RAGEngine:
75
 
76
  except Exception as e:
77
  logger.error(f"Error in search_and_process: {str(e)}")
78
- raise
79
 
80
  def get_relevant_context(self, query: str, k: int = 3) -> List[Dict]:
81
  """Get most relevant context from vector store"""
 
46
  # Get web search results
47
  web_results = self.web_search.search(query, max_results)
48
 
49
+ if 'error' in web_results:
50
+ return {'error': web_results['error']}
51
+
52
  # Process and store new content
53
+ if 'results' in web_results and web_results['results']:
54
+ for result in web_results['results']:
55
+ if 'content' in result:
56
+ self.process_and_store_content(
57
+ result['content'],
58
+ metadata={'url': result.get('url'), 'title': result.get('title')}
59
+ )
60
 
61
+ # Perform similarity search if we have stored vectors
62
  if self.vector_store:
63
  similar_docs = self.vector_store.similarity_search_with_score(
64
  query,
65
  k=similarity_k
66
  )
67
 
68
+ # Add similarity results to web results
69
  web_results['similar_chunks'] = [
70
  {
71
  'content': doc[0].page_content,
 
79
 
80
  except Exception as e:
81
  logger.error(f"Error in search_and_process: {str(e)}")
82
+ return {'error': f"Search failed: {str(e)}"}
83
 
84
  def get_relevant_context(self, query: str, k: int = 3) -> List[Dict]:
85
  """Get most relevant context from vector store"""