Spaces:
Build error
Build error
File size: 4,157 Bytes
44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 53a521c 44198e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
from rag_engine import RAGEngine
import torch
import os
import logging
import traceback
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def safe_search(query, max_results):
"""Wrapper function to handle errors gracefully"""
try:
rag = RAGEngine()
results = rag.search_and_process(query, max_results)
if 'error' in results:
return f"# β Error\nSorry, an error occurred while processing your search:\n```\n{results['error']}\n```"
return format_results(results)
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
logger.error(error_msg)
return f"# β Error\nSorry, an error occurred while processing your search:\n```\n{str(e)}\n```"
def format_results(results):
"""Format search results for display"""
if not results or not results.get('results'):
return "# β οΈ No Results\nNo search results were found. Please try a different query."
formatted = f"# π Search Results\n\n"
# Add insights section
if 'insights' in results:
formatted += f"## π‘ Key Insights\n{results['insights']}\n\n"
# Add follow-up questions
if 'follow_up_questions' in results:
formatted += "## β Follow-up Questions\n"
for q in results['follow_up_questions']:
if q and q.strip():
formatted += f"- {q.strip()}\n"
formatted += "\n"
# Add main results
if 'results' in results:
formatted += "## π Detailed Results\n\n"
for i, result in enumerate(results['results'], 1):
if not isinstance(result, dict):
continue
formatted += f"### {i}. "
if 'url' in result:
title = result.get('title', 'Untitled')
formatted += f"[{title}]({result['url']})\n"
if 'summary' in result:
formatted += f"\n{result['summary']}\n\n"
# Add similar chunks if available
if 'similar_chunks' in results:
formatted += "## π Related Content\n\n"
for i, chunk in enumerate(results['similar_chunks'], 1):
if not isinstance(chunk, dict):
continue
formatted += f"### Related {i}\n"
if 'metadata' in chunk:
meta = chunk['metadata']
if 'title' in meta and 'url' in meta:
formatted += f"From [{meta['title']}]({meta['url']})\n"
if 'content' in chunk:
formatted += f"\n{chunk['content'][:200]}...\n\n"
return formatted
def create_demo():
"""Create the Gradio interface"""
with gr.Blocks(title="Web Search + RAG") as demo:
gr.Markdown("# π Intelligent Web Search")
gr.Markdown("Search the web with AI-powered insights and analysis.")
with gr.Row():
with gr.Column():
query = gr.Textbox(
label="Search Query",
placeholder="Enter your search query...",
lines=2
)
max_results = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of Results"
)
search_button = gr.Button("π Search")
output = gr.Markdown()
search_button.click(
fn=safe_search,
inputs=[query, max_results],
outputs=output
)
gr.Examples(
examples=[
["What is RAG in AI?", 5],
["Latest developments in quantum computing", 3],
["How does BERT work?", 5]
],
inputs=[query, max_results]
)
return demo
# Create the demo
demo = create_demo()
# Launch for Spaces
demo.launch()
|