szili2011's picture
Update app.py
012a8ba verified
raw
history blame
2.66 kB
import gradio as gr
import tensorflow as tf
import numpy as np
import nltk
from nltk.corpus import cmudict
from scipy.io.wavfile import write
# Define sample_rate as a global constant
SAMPLE_RATE = 22050
# Download required NLTK data
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('cmudict', quiet=True)
# Load your model from the root directory
model = tf.keras.models.load_model('audio_model.h5', compile=False)
# Preprocess input text
def preprocess_text(text):
d = cmudict.dict()
words = text.lower().split()
phonemes = []
for word in words:
if word in d:
phonemes.append(d[word][0])
else:
phonemes.append(['UNKNOWN'])
flattened_phonemes = [p for sublist in phonemes for p in sublist]
num_features = 13
sequence_length = len(flattened_phonemes)
if sequence_length == 0:
return np.zeros((1, 1, num_features))
input_data = np.random.rand(sequence_length, num_features)
input_data = np.expand_dims(input_data, axis=0)
return input_data
# Convert model output to an audio file
def convert_to_audio(model_output, filename="output.wav"):
if model_output.size == 0:
return None
normalized_output = np.interp(model_output, (model_output.min(), model_output.max()), (-1, 1))
write(filename, SAMPLE_RATE, normalized_output.astype(np.float32))
return filename
# Define function to generate sound effect
def generate_sfx(text, duration):
input_data = preprocess_text(text)
if input_data.shape[1] == 0:
return None
prediction = model.predict(input_data)
flat_prediction = prediction.flatten()
if len(flat_prediction) == 0:
return None
num_repeats = (duration * SAMPLE_RATE // len(flat_prediction)) + 1
audio_data = np.tile(flat_prediction, num_repeats)[:duration * SAMPLE_RATE]
audio_file = convert_to_audio(audio_data, filename="output.wav")
return audio_file
# Define the Gradio interface
interface = gr.Interface(
fn=generate_sfx,
inputs=[
gr.Textbox(label="Enter a Word", placeholder="Write a Word To Convert it into SFX Sound"),
gr.Slider(minimum=1, maximum=20, value=3, step=1, label="Duration (seconds)")
],
outputs=gr.Audio(label="Generated SFX", type="filepath"),
title="SFX Generator from Text",
description="Enter a word or sentence, and the model will generate an SFX sound.",
)
# Run the interface
if __name__ == "__main__":
tf.config.set_visible_devices([], 'GPU')
# The ValueError shows that share=True IS required for your environment.
interface.launch(share=True)