Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -13,8 +13,6 @@ nltk.download('averaged_perceptron_tagger', quiet=True)
|
|
13 |
nltk.download('cmudict', quiet=True)
|
14 |
|
15 |
# Load your model from the root directory
|
16 |
-
# Add compile=False as it's often needed for inference-only models
|
17 |
-
# and can resolve some loading warnings.
|
18 |
model = tf.keras.models.load_model('audio_model.h5', compile=False)
|
19 |
|
20 |
# Preprocess input text
|
@@ -31,24 +29,20 @@ def preprocess_text(text):
|
|
31 |
|
32 |
flattened_phonemes = [p for sublist in phonemes for p in sublist]
|
33 |
|
34 |
-
# Create dummy 13-feature vectors for each phoneme (implement your own feature extraction)
|
35 |
num_features = 13
|
36 |
sequence_length = len(flattened_phonemes)
|
37 |
-
if sequence_length == 0:
|
38 |
return np.zeros((1, 1, num_features))
|
39 |
|
40 |
input_data = np.random.rand(sequence_length, num_features)
|
41 |
-
|
42 |
-
# Add batch dimension
|
43 |
-
input_data = np.expand_dims(input_data, axis=0) # Shape (1, sequence_length, 13)
|
44 |
|
45 |
return input_data
|
46 |
|
47 |
# Convert model output to an audio file
|
48 |
def convert_to_audio(model_output, filename="output.wav"):
|
49 |
-
if model_output.size == 0:
|
50 |
return None
|
51 |
-
# Normalize audio to be between -1 and 1
|
52 |
normalized_output = np.interp(model_output, (model_output.min(), model_output.max()), (-1, 1))
|
53 |
write(filename, SAMPLE_RATE, normalized_output.astype(np.float32))
|
54 |
return filename
|
@@ -57,17 +51,15 @@ def convert_to_audio(model_output, filename="output.wav"):
|
|
57 |
def generate_sfx(text, duration):
|
58 |
input_data = preprocess_text(text)
|
59 |
|
60 |
-
# Check for empty input after preprocessing
|
61 |
if input_data.shape[1] == 0:
|
62 |
-
return None
|
63 |
|
64 |
prediction = model.predict(input_data)
|
65 |
-
|
66 |
flat_prediction = prediction.flatten()
|
|
|
67 |
if len(flat_prediction) == 0:
|
68 |
return None
|
69 |
|
70 |
-
# Generate longer output by repeating or padding
|
71 |
num_repeats = (duration * SAMPLE_RATE // len(flat_prediction)) + 1
|
72 |
audio_data = np.tile(flat_prediction, num_repeats)[:duration * SAMPLE_RATE]
|
73 |
|
@@ -89,6 +81,6 @@ interface = gr.Interface(
|
|
89 |
|
90 |
# Run the interface
|
91 |
if __name__ == "__main__":
|
92 |
-
tf.config.set_visible_devices([], 'GPU')
|
93 |
-
#
|
94 |
-
interface.launch()
|
|
|
13 |
nltk.download('cmudict', quiet=True)
|
14 |
|
15 |
# Load your model from the root directory
|
|
|
|
|
16 |
model = tf.keras.models.load_model('audio_model.h5', compile=False)
|
17 |
|
18 |
# Preprocess input text
|
|
|
29 |
|
30 |
flattened_phonemes = [p for sublist in phonemes for p in sublist]
|
31 |
|
|
|
32 |
num_features = 13
|
33 |
sequence_length = len(flattened_phonemes)
|
34 |
+
if sequence_length == 0:
|
35 |
return np.zeros((1, 1, num_features))
|
36 |
|
37 |
input_data = np.random.rand(sequence_length, num_features)
|
38 |
+
input_data = np.expand_dims(input_data, axis=0)
|
|
|
|
|
39 |
|
40 |
return input_data
|
41 |
|
42 |
# Convert model output to an audio file
|
43 |
def convert_to_audio(model_output, filename="output.wav"):
|
44 |
+
if model_output.size == 0:
|
45 |
return None
|
|
|
46 |
normalized_output = np.interp(model_output, (model_output.min(), model_output.max()), (-1, 1))
|
47 |
write(filename, SAMPLE_RATE, normalized_output.astype(np.float32))
|
48 |
return filename
|
|
|
51 |
def generate_sfx(text, duration):
|
52 |
input_data = preprocess_text(text)
|
53 |
|
|
|
54 |
if input_data.shape[1] == 0:
|
55 |
+
return None
|
56 |
|
57 |
prediction = model.predict(input_data)
|
|
|
58 |
flat_prediction = prediction.flatten()
|
59 |
+
|
60 |
if len(flat_prediction) == 0:
|
61 |
return None
|
62 |
|
|
|
63 |
num_repeats = (duration * SAMPLE_RATE // len(flat_prediction)) + 1
|
64 |
audio_data = np.tile(flat_prediction, num_repeats)[:duration * SAMPLE_RATE]
|
65 |
|
|
|
81 |
|
82 |
# Run the interface
|
83 |
if __name__ == "__main__":
|
84 |
+
tf.config.set_visible_devices([], 'GPU')
|
85 |
+
# The ValueError shows that share=True IS required for your environment.
|
86 |
+
interface.launch(share=True)
|