Spaces:
Runtime error
Runtime error
File size: 2,661 Bytes
6c20eaa 38b530f 09a58b6 38b530f 09a58b6 3ffb926 773ac74 90e00da 09a58b6 773ac74 6c20eaa 09a58b6 773ac74 6c20eaa 09a58b6 6c20eaa 09a58b6 26107f3 09a58b6 012a8ba 773ac74 09a58b6 012a8ba 09a58b6 6c20eaa 09a58b6 90e00da 012a8ba 773ac74 09a58b6 90e00da 09a58b6 c3f5e81 09a58b6 773ac74 09a58b6 773ac74 012a8ba 773ac74 09a58b6 773ac74 012a8ba 773ac74 38b530f 773ac74 09a58b6 3ffb926 09a58b6 773ac74 09a58b6 6c20eaa 09a58b6 38b530f 012a8ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import gradio as gr
import tensorflow as tf
import numpy as np
import nltk
from nltk.corpus import cmudict
from scipy.io.wavfile import write
# Define sample_rate as a global constant
SAMPLE_RATE = 22050
# Download required NLTK data
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('cmudict', quiet=True)
# Load your model from the root directory
model = tf.keras.models.load_model('audio_model.h5', compile=False)
# Preprocess input text
def preprocess_text(text):
d = cmudict.dict()
words = text.lower().split()
phonemes = []
for word in words:
if word in d:
phonemes.append(d[word][0])
else:
phonemes.append(['UNKNOWN'])
flattened_phonemes = [p for sublist in phonemes for p in sublist]
num_features = 13
sequence_length = len(flattened_phonemes)
if sequence_length == 0:
return np.zeros((1, 1, num_features))
input_data = np.random.rand(sequence_length, num_features)
input_data = np.expand_dims(input_data, axis=0)
return input_data
# Convert model output to an audio file
def convert_to_audio(model_output, filename="output.wav"):
if model_output.size == 0:
return None
normalized_output = np.interp(model_output, (model_output.min(), model_output.max()), (-1, 1))
write(filename, SAMPLE_RATE, normalized_output.astype(np.float32))
return filename
# Define function to generate sound effect
def generate_sfx(text, duration):
input_data = preprocess_text(text)
if input_data.shape[1] == 0:
return None
prediction = model.predict(input_data)
flat_prediction = prediction.flatten()
if len(flat_prediction) == 0:
return None
num_repeats = (duration * SAMPLE_RATE // len(flat_prediction)) + 1
audio_data = np.tile(flat_prediction, num_repeats)[:duration * SAMPLE_RATE]
audio_file = convert_to_audio(audio_data, filename="output.wav")
return audio_file
# Define the Gradio interface
interface = gr.Interface(
fn=generate_sfx,
inputs=[
gr.Textbox(label="Enter a Word", placeholder="Write a Word To Convert it into SFX Sound"),
gr.Slider(minimum=1, maximum=20, value=3, step=1, label="Duration (seconds)")
],
outputs=gr.Audio(label="Generated SFX", type="filepath"),
title="SFX Generator from Text",
description="Enter a word or sentence, and the model will generate an SFX sound.",
)
# Run the interface
if __name__ == "__main__":
tf.config.set_visible_devices([], 'GPU')
# The ValueError shows that share=True IS required for your environment.
interface.launch(share=True) |