Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,15 +5,17 @@ import nltk
|
|
| 5 |
from nltk.corpus import cmudict
|
| 6 |
from scipy.io.wavfile import write
|
| 7 |
|
| 8 |
-
#
|
| 9 |
SAMPLE_RATE = 22050
|
| 10 |
|
| 11 |
# Download required NLTK data
|
| 12 |
-
nltk.download('averaged_perceptron_tagger')
|
| 13 |
-
nltk.download('cmudict')
|
| 14 |
|
| 15 |
# Load your model from the root directory
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Preprocess input text
|
| 19 |
def preprocess_text(text):
|
|
@@ -32,6 +34,9 @@ def preprocess_text(text):
|
|
| 32 |
# Create dummy 13-feature vectors for each phoneme (implement your own feature extraction)
|
| 33 |
num_features = 13
|
| 34 |
sequence_length = len(flattened_phonemes)
|
|
|
|
|
|
|
|
|
|
| 35 |
input_data = np.random.rand(sequence_length, num_features)
|
| 36 |
|
| 37 |
# Add batch dimension
|
|
@@ -41,19 +46,30 @@ def preprocess_text(text):
|
|
| 41 |
|
| 42 |
# Convert model output to an audio file
|
| 43 |
def convert_to_audio(model_output, filename="output.wav"):
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
normalized_output = np.interp(model_output, (model_output.min(), model_output.max()), (-1, 1))
|
| 46 |
write(filename, SAMPLE_RATE, normalized_output.astype(np.float32))
|
| 47 |
return filename
|
| 48 |
|
| 49 |
# Define function to generate sound effect
|
| 50 |
-
def generate_sfx(text, duration):
|
| 51 |
input_data = preprocess_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
prediction = model.predict(input_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
# Generate longer output by repeating or padding
|
| 55 |
-
|
| 56 |
-
audio_data = np.tile(
|
| 57 |
|
| 58 |
audio_file = convert_to_audio(audio_data, filename="output.wav")
|
| 59 |
|
|
@@ -64,8 +80,7 @@ interface = gr.Interface(
|
|
| 64 |
fn=generate_sfx,
|
| 65 |
inputs=[
|
| 66 |
gr.Textbox(label="Enter a Word", placeholder="Write a Word To Convert it into SFX Sound"),
|
| 67 |
-
|
| 68 |
-
gr.Slider(minimum=2, maximum=20, value=5, label="Duration (seconds)")
|
| 69 |
],
|
| 70 |
outputs=gr.Audio(label="Generated SFX", type="filepath"),
|
| 71 |
title="SFX Generator from Text",
|
|
@@ -75,4 +90,5 @@ interface = gr.Interface(
|
|
| 75 |
# Run the interface
|
| 76 |
if __name__ == "__main__":
|
| 77 |
tf.config.set_visible_devices([], 'GPU') # Disable GPU
|
| 78 |
-
|
|
|
|
|
|
| 5 |
from nltk.corpus import cmudict
|
| 6 |
from scipy.io.wavfile import write
|
| 7 |
|
| 8 |
+
# Define sample_rate as a global constant
|
| 9 |
SAMPLE_RATE = 22050
|
| 10 |
|
| 11 |
# Download required NLTK data
|
| 12 |
+
nltk.download('averaged_perceptron_tagger', quiet=True)
|
| 13 |
+
nltk.download('cmudict', quiet=True)
|
| 14 |
|
| 15 |
# Load your model from the root directory
|
| 16 |
+
# Add compile=False as it's often needed for inference-only models
|
| 17 |
+
# and can resolve some loading warnings.
|
| 18 |
+
model = tf.keras.models.load_model('audio_model.h5', compile=False)
|
| 19 |
|
| 20 |
# Preprocess input text
|
| 21 |
def preprocess_text(text):
|
|
|
|
| 34 |
# Create dummy 13-feature vectors for each phoneme (implement your own feature extraction)
|
| 35 |
num_features = 13
|
| 36 |
sequence_length = len(flattened_phonemes)
|
| 37 |
+
if sequence_length == 0: # Handle empty input
|
| 38 |
+
return np.zeros((1, 1, num_features))
|
| 39 |
+
|
| 40 |
input_data = np.random.rand(sequence_length, num_features)
|
| 41 |
|
| 42 |
# Add batch dimension
|
|
|
|
| 46 |
|
| 47 |
# Convert model output to an audio file
|
| 48 |
def convert_to_audio(model_output, filename="output.wav"):
|
| 49 |
+
if model_output.size == 0: # Handle empty output
|
| 50 |
+
return None
|
| 51 |
+
# Normalize audio to be between -1 and 1
|
| 52 |
normalized_output = np.interp(model_output, (model_output.min(), model_output.max()), (-1, 1))
|
| 53 |
write(filename, SAMPLE_RATE, normalized_output.astype(np.float32))
|
| 54 |
return filename
|
| 55 |
|
| 56 |
# Define function to generate sound effect
|
| 57 |
+
def generate_sfx(text, duration):
|
| 58 |
input_data = preprocess_text(text)
|
| 59 |
+
|
| 60 |
+
# Check for empty input after preprocessing
|
| 61 |
+
if input_data.shape[1] == 0:
|
| 62 |
+
return None # Return None to clear the audio component
|
| 63 |
+
|
| 64 |
prediction = model.predict(input_data)
|
| 65 |
+
|
| 66 |
+
flat_prediction = prediction.flatten()
|
| 67 |
+
if len(flat_prediction) == 0:
|
| 68 |
+
return None
|
| 69 |
|
| 70 |
# Generate longer output by repeating or padding
|
| 71 |
+
num_repeats = (duration * SAMPLE_RATE // len(flat_prediction)) + 1
|
| 72 |
+
audio_data = np.tile(flat_prediction, num_repeats)[:duration * SAMPLE_RATE]
|
| 73 |
|
| 74 |
audio_file = convert_to_audio(audio_data, filename="output.wav")
|
| 75 |
|
|
|
|
| 80 |
fn=generate_sfx,
|
| 81 |
inputs=[
|
| 82 |
gr.Textbox(label="Enter a Word", placeholder="Write a Word To Convert it into SFX Sound"),
|
| 83 |
+
gr.Slider(minimum=1, maximum=20, value=3, step=1, label="Duration (seconds)")
|
|
|
|
| 84 |
],
|
| 85 |
outputs=gr.Audio(label="Generated SFX", type="filepath"),
|
| 86 |
title="SFX Generator from Text",
|
|
|
|
| 90 |
# Run the interface
|
| 91 |
if __name__ == "__main__":
|
| 92 |
tf.config.set_visible_devices([], 'GPU') # Disable GPU
|
| 93 |
+
# --- THIS IS THE KEY FIX FOR THE ValueError ---
|
| 94 |
+
interface.launch(share=True)
|