BrainExplorer / functions /pathway_analyses.py
syedislamuddin's picture
Upload 5 files
16c6962
import scipy
import warnings
#import anndata2ri
import pandas as pd
import scanpy as sc
import numpy as np
import seaborn as sb
import decoupler as dc
from scipy import sparse
from anndata import AnnData
from tabnanny import verbose
import matplotlib.pyplot as plt
#from gsva_prep import prep_gsva
from typing import Optional, Union
from matplotlib.pyplot import rcParams
#from statsmodels.stats.multitest import multipletests
#from sklearn.model_selection import train_test_split
#from rpy2.robjects.conversion import localconverter
def rescale_matrix(S, log_scale=False):
"""
Sums cell-level counts by factors in label vector
Parameters
----------
S : np.ndarray, scipy.sparse.csr_matrix or pandas.DataFrame
Matrix with read counts (gene x cell)
log_scale : bool, optional (default: False)
Whether to log-transform the rescaled matrix
Returns
-------
B : np.ndarray or scipy.sparse.csr_matrix
Scaled and log-transformed matrix
"""
if isinstance(S, pd.DataFrame):
S = S.values
elif isinstance(S, np.ndarray):
pass
elif isinstance(S, scipy.sparse.csr_matrix):
S = S.toarray()
else:
raise ValueError('Input S must be a pandas.DataFrame, numpy.ndarray or scipy.sparse.csr_matrix')
cs = np.sum(S, axis=0)
cs[cs == 0] = 1
B = np.median(cs) * (S / cs)
if log_scale:
B = np.log1p(B)
return B
def normalize_default(adata, log_scale=True):
"""
Normalizes gene expression matrix by total count and scales by median
Parameters
----------
adata : AnnData
Annotated data matrix.
log_scale : bool, optional (default: True)
Whether to log-transform the rescaled matrix.
Returns
-------
adata : AnnData
Annotated data matrix with normalized and scaled expression values.
"""
if 'counts' in adata.layers.keys():
print('normalizaing data using count data in .layers["counts] ')
S = adata.layers['counts']
else:
print('normaling data using count data in .X')
S = adata.X
B = rescale_matrix(S, log_scale=log_scale)
adata.X = B
return adata
def normalize_matrix(
X: Union[np.ndarray, sparse.spmatrix],
top_features_frac: float = 1.0,
scale_factor: Union[str, float, int, np.ndarray, None] = "median",
transformation: Union[str, None] = "log",
anchor_features: Union[np.ndarray, None] = None,
) -> Union[np.ndarray, sparse.spmatrix]:
X = X.astype(dtype=np.float64)
# Which features (i.e. genes) should we use to compute library sizes?
if anchor_features is not None:
lib_sizes = np.array(np.mean(X[:, anchor_features], axis=1))
else:
if top_features_frac < 1.0:
universality = np.array(np.mean(X > 0, axis=0))
selected_features = np.flatnonzero(universality > (1 - top_features_frac))
lib_sizes = np.array(np.mean(X[:, selected_features], axis=1))
else:
lib_sizes = np.array(np.mean(X, axis=1))
# Note: mean as opposed to sum
# Normalize library sizes
if isinstance(X, sparse.spmatrix):
X_scaled = X.multiply(1 / lib_sizes)
else:
try:
X_scaled = X / lib_sizes
except ValueError:
lib_sizes = np.reshape(lib_sizes, (-1, 1))
X_scaled = X / lib_sizes
# scale normalized columns
if scale_factor == "median":
kappa = np.median(np.array(np.sum(X, axis=1) / np.sum(X_scaled, axis=1)))
X_scaled_norm = X_scaled * kappa
elif isinstance(scale_factor, (int, float)):
X_scaled_norm = X_scaled * scale_factor
elif isinstance(scale_factor, np.ndarray):
if sparse.issparse(X_scaled):
X_scaled_norm = X_scaled.multiply(scale_factor)
else:
X_scaled_norm = X_scaled / scale_factor
# For compatibility with C
if sparse.issparse(X_scaled_norm):
X_scaled_norm = sparse.csc_matrix(X_scaled_norm)
# Post-transformation
if transformation == "log":
X_scaled_norm_trans = np.log1p(X_scaled_norm)
elif transformation == "tukey":
if sparse.issparse(X_scaled_norm):
nnz_idx = X_scaled_norm.nonzero()
ii = nnz_idx[0]
jj = nnz_idx[1]
vv = X_scaled_norm[ii, jj]
vv_transformed = np.sqrt(vv) + np.sqrt(1 + vv)
X_scaled_norm[ii, jj] = vv_transformed
else:
X_scaled_norm[X_scaled_norm < 0] = 0
vv = X_scaled_norm[X_scaled_norm != 0]
vv_transformed = np.sqrt(vv) + np.sqrt(1 + vv)
X_scaled_norm[X_scaled_norm != 0] = vv_transformed
# elif transformation == "lsi":
# if sparse.issparse(X_scaled_norm):
# X_scaled_norm_trans = _an.LSI(X_scaled_norm)
# else:
# X_scaled_norm_sp = sparse.csc_matrix(X_scaled_norm)
# X_scaled_norm_trans = _an.LSI(X_scaled_norm_sp).toarray()
else:
X_scaled_norm_trans = X_scaled_norm
return X_scaled_norm_trans
def normalize_actionet(
adata: AnnData,
layer_key: Optional[str] = None,
layer_key_out: Optional[str] = None,
top_features_frac: float = 1.0,
scale_factor: Union[str, float, int, np.ndarray, None] = "median",
transformation: Union[str, None] = "log",
anchor_features: Union[np.ndarray, None] = None,
copy: Optional[bool] = False,
) -> Optional[AnnData]:
adata = adata.copy() if copy else adata
if "metadta" in adata.uns.keys():
if "norm_method" in adata.uns["metadata"].keys(): # Already normalized? leave it alone!
# return adata if copy else None
warnings.warn("AnnData object is prenormalized. Please make sure to use the right assay.")
if layer_key is None and "input_assay" in adata.uns["metadata"].keys():
layer_key = adata.uns["metadata"]["input_assay"]
if layer_key is not None:
if layer_key not in adata.layers.keys():
raise ValueError("Did not find adata.layers['" + layer_key + "']. ")
S = adata.layers[layer_key]
else:
S = adata.X
if sparse.issparse(S):
UE = set(S.data)
else:
UE = set(S.flatten())
nonint_count = len(UE.difference(set(np.arange(0, max(UE) + 1))))
if 0 < nonint_count:
warnings.warn("Input [count] assay has non-integer values, which looks like a normalized matrix. Please make sure to use the right assay.")
S = normalize_matrix(
S,
anchor_features=anchor_features,
top_features_frac=top_features_frac,
scale_factor=scale_factor,
transformation=transformation,
)
adata.uns["metadata"] = {}
adata.uns["metadata"]["norm_method"] = "default_top%.2f_%s" % (
top_features_frac,
transformation,
)
if layer_key_out is not None:
adata.uns["metadata"]["default_assay"] = layer_key_out
adata.layers[layer_key_out] = S
else:
adata.uns["metadata"]["default_assay"] = None
adata.X = S
return adata if copy else None
def read_pathways(filename):
with open(filename, 'r') as temp_f:
col_count = [ len(l.split("\t")) for l in temp_f.readlines() ]
column_names = [i for i in range(0, max(col_count))]
### Read csv
return pd.read_csv(filename, header=None, delimiter="\t", names=column_names)
def filter_expressed_genes_by_celltype(adata: AnnData,
threshold: float=0.05,
filter_genes_from: str='singlecell',
subject_id: str='Subject'):
"""
Function to filter expressed genes by cell type based on a threshold
Parameters:
-----------
adata : AnnData object
Annotated Data matrix with rows representing genes and columns representing cells.
threshold : float, optional (default=0.05)
The threshold to use for filtering expressed genes based on the minimum number of cells they are detected in.
filter_genes_from: str, optional (default=`singlecell`)
Whether to filter genes that meet threshold in pseudobulk data or singlecell data.
subject_id (str): a string indicating the column containing individual identifiers.
Returns:
--------
expressed_genes_per_celltype : pandas DataFrame
A dataframe where the rows are the gene names and columns are the cell types,
containing only the genes that are expressed in at least the specified percentage of cells for each cell type.
"""
# Initialize empty dictionaries to store the expressed genes and gene sets per cell type
expressed_genes_per_celltype = {}
gene_set_per_celltype = {}
if filter_genes_from=='pseudobulk':
# Get pseudo-bulk profile
adata = dc.get_pseudobulk(adata,
sample_col=subject_id,
groups_col='cell_type',
layer='counts',
mode='sum',
min_cells=0,
min_counts=0
)
# Loop through each unique cell type in the input AnnData object
for cell_type in adata.obs.cell_type.unique():
expressed_genes_per_celltype[cell_type] = dc.filter_by_prop(adata[adata.obs['cell_type']==cell_type],
min_prop=threshold)
elif filter_genes_from=='singlecell':
# Loop through each unique cell type in the input AnnData object
for cell_type in adata.obs.cell_type.unique():
# Calculate the number of cells based on the specified threshold
percent = threshold
num_cells = round(percent*len(adata[adata.obs['cell_type']==cell_type]))
# Filter genes based on minimum number of cells and store the resulting gene names
expressed_genes_per_celltype[cell_type], _ = sc.pp.filter_genes(adata[adata.obs.cell_type==cell_type].layers['counts'],
min_cells=num_cells, inplace=False)
expressed_genes_per_celltype[cell_type] = list(adata.var_names[expressed_genes_per_celltype[cell_type]])
# Convert the dictionary of expressed genes per cell type to a Pandas DataFrame
expressed_genes_per_celltype = pd.DataFrame.from_dict(expressed_genes_per_celltype, orient='index').transpose()
return expressed_genes_per_celltype
def filter_lowly_exp_genes(expressed: pd.DataFrame,
all_paths: pd.DataFrame,
threshold: float = 0.33):
"""
Filters lowly expressed gene sets based on a threshold and pathway membership.
Parameters:
-----------
expressed: pandas.DataFrame
A DataFrame of expressed genes with cell types as columns and gene IDs as rows.
all_paths: pandas.DataFrame
A DataFrame of gene sets with pathways as columns and gene IDs as rows.
threshold: float, optional (default=0.33)
A proportion threshold used to filter gene sets based on their expression in each cell type.
Returns:
--------
gene_set_per_celltype: dict of pandas.DataFrame
A dictionary of gene sets per cell type, with cell type names as keys and gene set dataframes as values.
Each gene set dataframe has three columns: 'description', 'member', and 'name'.
"""
# Initialize empty dictionaries to store the gene sets and gene sets per cell type
gene_set = {}
gene_set_per_celltype = {}
# Loop through each cell type in the input Pandas DataFrame of expressed genes
for cell_type in expressed.columns:
# Determine which pathways have a proportion of genes above the specified threshold
index = [sum(all_paths[x].isin(expressed[cell_type]))/len(all_paths[x]) > threshold for x in all_paths.columns]
# Filter pathways based on threshold and store the resulting gene sets
p = all_paths.loc[:, index]
x = {y: pd.Series(list(set(expressed[cell_type]).intersection(set(p[y])))) for y in p.columns}
x = {k: v for k, v in x.items() if not v.empty}
gene_set[cell_type] = x
# Convert the gene sets to Pandas DataFrames and store them in a dictionary by cell type
gene_set_per_celltype[cell_type] = pd.DataFrame(columns=['description', 'member', 'name'])
for pathway, gene_list in gene_set[cell_type].items():
df = pd.DataFrame(columns=['description', 'member', 'name'])
df['member'] = gene_list
df['name'] = pathway
df['description'] = pathway.split(" ")[-1]
gene_set_per_celltype[cell_type] = pd.concat([gene_set_per_celltype[cell_type], df], join='outer', ignore_index=True)
# Sort the resulting gene sets by description and member
gene_set_per_celltype[cell_type].sort_index(axis=1, inplace=True)
gene_set_per_celltype[cell_type].sort_index(axis=0, inplace=True)
return gene_set_per_celltype
def get_ind_level_ave(adata: AnnData, subject_id: str = 'Subject', method: str = "agg_x_num",
expressed_genes_per_celltype: dict = {}, filter_genes_at_threshold: bool = True):
"""
Get averaged expression data for each cell type and individual in an AnnData object.
Args:
adata (AnnData): An AnnData object with read counts (gene x cell).
subject_id (str): a string indicating the column containing individual identifiers.
method (str): a string indicating the method to be used. The default is "agg_x_num".
filter_genes_at_threshold (bool): A boolean indicating whether to filter genes based on threshold. The default is True.
expressed_genes_per_celltype (float): A dictionary of the genes to be filtered for each celltype.
Returns:
Dictionary: A dictionary of data frames with averaged expression data for each cell type and individual.
"""
if method == "agg_x_norm":
avs_logcounts_cellxind = {}
# loop over each unique cell type in the annotation metadata
for cell_type in adata.obs.cell_type.unique():
# filter genes based on threshold
if filter_genes_at_threshold:
adata_temp = adata[adata.obs.cell_type==cell_type].copy()
# sc.pp.filter_genes(adata_temp, min_cells=gene_celltype_threshold*adata_temp.n_obs)
adata_temp = adata_temp[:, adata_temp.var_names.isin(expressed_genes_per_celltype[cell_type].tolist())]
else:
adata_temp = adata.copy()
# Get pseudo-bulk profile
pdata = dc.get_pseudobulk(adata_temp, sample_col=subject_id, groups_col='cell_type', layer='counts', mode='sum',
min_cells=0, min_counts=0)
# genes = dc.filter_by_prop(pdata, min_prop=0.05, min_smpls=1)
# pdata = pdata[:, genes].copy()
# Normalize and log transform
# sc.pp.normalize_total(pdata, 1e06)
# sc.pp.log1p(pdata)
pdata.layers['counts'] = pdata.X
pdata = normalize_actionet(pdata, layer_key = 'counts', layer_key_out = None,
top_features_frac = 1.0, scale_factor = "median",
transformation = "log", anchor_features = None, copy = True)
# Store the log-normalized, averaged expression data for each individual and cell type
avs_logcounts_cellxind[cell_type] = pd.DataFrame(pdata.X.T, columns=pdata.obs[subject_id], index=pdata.var_names)
del adata_temp, pdata
elif method == 'norm_x_agg':
def sum_counts(counts, label, cell_labels, gene_labels):
"""
Sums cell-level counts by factors in label vector.
Args:
counts (AnnData): An AnnData object with read counts (gene x cell).
label (pd.DataFrame): Variable of interest by which to sum counts.
cell_labels (pd.Index): Vector of cell labels.
gene_labels (pd.Index): Vector of gene labels.
Returns:
Dictionary: A dictionary with the following keys:
- 'summed_counts': A data frame with summed counts.
- 'ncells': A data frame with the number of cells used per summation.
"""
# Create a data frame with the label vector and add a column of 1s for counting.
label_df = pd.DataFrame(label)
label_df.columns = ['ID']
label_df['index'] = 1
# Add a column for cell type and pivot the data frame to create a matrix of counts.
label_df['celltype'] = cell_labels
label_df = label_df.pivot_table(index='celltype', columns='ID', values='index', aggfunc=np.sum, fill_value=0)
label_df = label_df.astype(float)
# Multiply the counts matrix by the gene expression matrix to get summed counts.
summed_counts = pd.DataFrame(counts.X.T @ label_df.values, index = gene_labels, columns= label_df.columns)
# Sum the number of cells used for each summation.
ncells = label_df.sum()
# Return the summed counts and number of cells as a dictionary.
return {'summed_counts': summed_counts, 'ncells': ncells}
# Get metadata from the AnnData object.
meta = adata.obs # Get metadata
# Create a data frame of labels by combining cell type and individual metadata fields.
# Sum counts by individual
labels = pd.DataFrame(meta['cell_type'].astype(str) + '_' + meta[subject_id].astype(str), columns=['individual'])
# Sum counts by individual and store the results in a dictionary.
summed_logcounts_cellxind = sum_counts(adata, labels, adata.obs_names, adata.var_names)
# Calculate averages for each cell type and individual and store the results in a dictionary.
# Get averages corresponding to both count matrices
avs_logcounts = np.array(summed_logcounts_cellxind['summed_counts'].values) / np.array(summed_logcounts_cellxind['ncells'].values)
# avs_logcounts = np.array(summed_logcounts_cellxind['summed_counts'].values)
avs_logcounts = pd.DataFrame(avs_logcounts, index = summed_logcounts_cellxind['summed_counts'].index,
columns=summed_logcounts_cellxind['summed_counts'].columns)
# Split the averages by cell type and individual and store the results in a dictionary.
# Split column names into two parts: cell type and individual
x = [col.split('_') for col in avs_logcounts.columns]
celltype = [col[0] for col in x]
individual = [col[1] for col in x]
# Get unique cell types in the dataset
celltype_unique = np.unique(celltype)
# Create an empty dictionary to store the average counts for each cell type and individual
avs_by_ind_out = {}
# Loop over the unique cell types and subset the average counts for each cell type and individual
for i in celltype_unique:
index = np.array(celltype)==i
df = avs_logcounts.loc[:, index]
df.columns = np.array(individual)[index]
avs_by_ind_out[i] = df
if filter_genes_at_threshold:
# num_cells = round(gene_celltype_threshold*len(adata[adata.obs['cell_type']==cell_type]))
# # Filter genes based on minimum number of cells and store the resulting gene names
# gene_mask, _ = sc.pp.filter_genes(adata[adata.obs.cell_type==cell_type].layers['counts'],
# min_cells=num_cells,
# inplace=False)
# genes = list(adata.var_names[gene_mask])
avs_by_ind_out[i] = avs_by_ind_out[i].loc[expressed_genes_per_celltype[i], :]
else:
adata = adata.copy()
# Store the dictionary of average counts for each cell type and individual
avs_logcounts_cellxind = avs_by_ind_out
# Return the dictionary of average counts for each cell type and individual
return avs_logcounts_cellxind
def plot_and_select_top_deps(all_pathways: pd.DataFrame(),
list_of_paths_to_annotate: list = [],
save_name='cell_type_specific',
save_prefix: str = 'mathys_pfc',
filter: bool=False,
cell_type_specific: bool = True,
test_name: str = ''):
if cell_type_specific:
# Plot certain cell_type specific pathways
collated_df = pd.DataFrame(all_pathways.groupby(all_pathways.index).agg({'score_adj': list, 'celltype': list,
'logFC': list, 'P.Value': list, 'shortened': list, 'highlight': list}))
# filter pathways only expressed in one cell type
mask = collated_df["celltype"].apply(len) == 1
df = collated_df[mask]
# create pathway by cell type pivot table
scores_table = pd.pivot_table(all_pathways, values='score_adj', index='pathway', columns='celltype')
scores_table = scores_table.loc[df.index]
scores_table['shortened'] = df.shortened.apply(lambda x: x[0])
scores_table['highlight'] = df.highlight.apply(lambda x: x[0])
scores_table.sort_values(by=[cell_type for cell_type in all_pathways.celltype.unique()], inplace=True)
# drop pathways with same shortened names ??
scores_table = scores_table.drop_duplicates(subset='shortened', keep='first')
###### Plot Cell type specific data
if filter:
xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial']
# select only pathways that should be visualized
shortened_names = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)]['shortened']
scores_table = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)]
n_rows = len(scores_table)
fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained')
fig.tight_layout()
# order table by cell type name
# scores_table = scores_table.reindex(columns=['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte',
# 'OPC', 'Microglia'])
scores_table = scores_table[xticks]
g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g',
linewidths=0.15, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.2},
cbar_ax=None, square=False,ax=ax1, xticklabels=xticks, yticklabels=shortened_names, mask=None,)
cax = g1.figure.axes[-1]
g1.set_title(f'Select Cell-type-specific Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology',
fontsize=3)
g1.set_ylabel('')
g1.set_xlabel('')
ax1.tick_params(axis='both', which='major', labelsize=4, length=1.5, width=0.5)
cax.tick_params(labelsize=4, length=1.5, width=0.5, which="major")
plt.tight_layout()
plt.savefig(f'results/{test_name}/{save_prefix}_filtered_{save_name}_diff_exp_paths.pdf', bbox_inches='tight')
plt.show(block=False)
else:
xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial']
scores_table = scores_table[scores_table.shortened!='None']
yticklabels = scores_table['shortened']
# order table by cell type name
scores_table = scores_table[xticks]
n_rows = len(scores_table)
fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained')
fig.tight_layout()
g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g',
linewidths=0.07, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.1},
cbar_ax=None, square=False, ax=ax1, xticklabels=xticks, yticklabels=yticklabels, mask=None,)
cax = g1.figure.axes[-1]
g1.set_title(f'All Cell-type-specific Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology',
fontsize=3)
g1.set_ylabel('')
g1.set_xlabel('')
ax1.tick_params(axis='both', which='major', labelsize=2, length=1.5, width=0.25)
cax.tick_params(labelsize=4, length=1.5, width=0.25, which="major")
plt.tight_layout()
#plt.savefig(f'../results/{test_name}/{save_prefix}_all_{save_name}_diff_exp_paths.pdf', bbox_inches='tight')
plt.savefig(f'results/{test_name}/{save_prefix}_all_{save_name}_diff_exp_paths.pdf', bbox_inches='tight')
plt.show(block=False)
else:
# Plot certain cell_type specific pathways
collated_df = pd.DataFrame(all_pathways.groupby(all_pathways.index).agg({'score_adj': list, 'celltype': list,
'logFC': list, 'P.Value': list, 'shortened': list, 'highlight': list}))
# filte pathways only expressed in one cell type
mask = collated_df["celltype"].apply(len) > 1
df = collated_df[mask]
# create pathway by cell type pivot table
scores_table = pd.pivot_table(all_pathways, values='score_adj', index='pathway', columns='celltype')
scores_table = scores_table.loc[df.index]
scores_table['shortened'] = df.shortened.apply(lambda x: x[0])
scores_table['highlight'] = df.highlight.apply(lambda x: x[0])
scores_table.sort_values(by=[cell_type for cell_type in all_pathways.celltype.unique()], inplace=True)
# drop pathways with same shortened names ??
scores_table = scores_table.drop_duplicates(subset='shortened', keep='first')
###### Plot Cell type specific data
if filter:
xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial']
# select only pathways that should be visualized
shortened_names = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)]['shortened']
scores_table = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)]
# order table by cell type name
scores_table = scores_table[xticks]
n_rows = len(scores_table)
fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained')
fig.tight_layout()
g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g',
linewidths=0.15, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.2},
cbar_ax=None, square=False,ax=ax1, xticklabels=xticks, yticklabels=shortened_names, mask=None,)
cax = g1.figure.axes[-1]
g1.set_title(f'Select Shared Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology', fontsize=3)
g1.set_ylabel('')
g1.set_xlabel('')
ax1.tick_params(axis='both', which='major', labelsize=4, length=1.5, width=0.5)
cax.tick_params(labelsize=4, length=1.5, width=0.5, which="major")
plt.tight_layout()
plt.savefig(f'results/{test_name}/{save_prefix}_filtered_{save_name}_diff_exp_paths.pdf', bbox_inches='tight')
plt.show(block=False)
else:
xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial']
scores_table = scores_table[scores_table.shortened!='None']
yticklabels = scores_table['shortened']
# order table by cell type name
scores_table = scores_table[xticks]
n_rows = len(scores_table)
fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained')
fig.tight_layout()
g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g',
linewidths=0.07, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.1},
cbar_ax=None, square=False, ax=ax1, xticklabels=xticks, yticklabels=yticklabels, mask=None,)
cax = g1.figure.axes[-1]
g1.set_title(f'All Broad Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology', fontsize=3)
g1.set_ylabel('')
g1.set_xlabel('')
ax1.tick_params(axis='both', which='major', labelsize=2, length=1.5, width=0.25)
cax.tick_params(labelsize=4, length=1.5, width=0.25, which="major")
plt.tight_layout()
plt.savefig(f'results/{test_name}/{save_prefix}_all_{save_name}_diff_exp_paths.pdf', bbox_inches='tight')
plt.show(block=False)
return
def multi_study_pathway_overlap(pathway_scores: dict = {},
filtered_pathways: list = [],
cell_types: list = ["Excitatory", "Inhibitory", "Astrocyte",
"Microglia", "Oligodendrocyte", "OPC", "Endothelial"],
test_name: str = 'ad_vs_no',
top_n: int = 10,
pathways: list = [],
filter: bool = False,
save_suffix: str = 'ad_vs_no',
method: str = 'cell_type_overlap'):
"""
This function generates a heatmap of the overlapping pathways across multiple studies. The heatmap displays the adjusted
pathway scores across different cell types for each pathway in each study. The function also returns a dictionary of
filtered scores that contain only the overlapping pathways across the studies.
Parameters:
-----------
pathway_scores : dict
A dictionary of pathway scores for different studies.
filtered_pathways : list, optional
A list of pathways to be used as a filter.
cell_types : list, optional
A list of cell types to be included in the heatmap. Default is ["Excitatory", "Inhibitory", "Astrocyte",
"Microglia", "Oligodendrocyte", "OPC", "Endothelial"].
test_name : str, optional
The name of the test being compared. Default is 'ad_vs_no'.
top_n : int, optional
The number of top pathways to be included in the heatmap. Default is 10.
pathways : list, optional
A list of pathways to be included in the heatmap. If not empty, only these pathways will be included in the
heatmap. Default is [].
filter : bool, optional
If True, the function will filter out pathways that are not present in the filtered_pathways list. Default is
False.
save_suffix : str, optional
A suffix to be added to the output file name. Default is 'ad_vs_no'.
method : str, optional
The method used to generate the overlap. 'cell_type_overlap' will generate the overlap based on cell type.
'global_overlap' will generate the overlap based on all pathways in the studies. Default is 'cell_type_overlap'.
Returns:
--------
filtered_scores : dict
A dictionary of pathway scores for the overlapping pathways across the studies.
Examples:
---------
>>> multi_study_pathway_overlap(pathway_scores, filtered_pathways=['pathway1', 'pathway2'],
cell_types=['Excitatory', 'Astrocyte'], test_name='ad_vs_no', filter=True)
"""
for i, study in enumerate(pathway_scores.keys()):
pathway_scores[study][test_name] = pathway_scores[study][test_name][pathway_scores[study][test_name].celltype.isin(cell_types)]
if method == "cell_type_overlap":
overlap = []
for cell_type in cell_types:
eval_string = []
for i, study in enumerate(pathway_scores.keys()):
eval_string.append(f'set(pathway_scores["{study}"]["{test_name}"][pathway_scores["{study}"]["{test_name}"].celltype=="{cell_type}"].pathway)')
eval_string = '&'.join(eval_string)
overlap.extend(list(eval(eval_string)))
elif method == "global_overlap":
overlap = []
eval_string = []
for i, study in enumerate(pathway_scores.keys()):
eval_string.append(f'set(pathway_scores["{study}"]["{test_name}"].pathway)')
eval_string = '&'.join(eval_string)
overlap.extend(list(eval(eval_string)))
if filter:
n_rows = len(set(filtered_pathways) & set(overlap))
else:
n_rows = len(overlap)
fig, axs = plt.subplots(1, 3, figsize=(3.5, n_rows*0.095), gridspec_kw={'width_ratios':[0.85, 0.85, 1]}, sharex=False,
sharey=True, layout='constrained')
fig.tight_layout()
filtered_scores = {}
shortened_names = {}
for i, study in enumerate(pathway_scores.keys()):
filtered_scores[study] = pathway_scores[study][test_name][pathway_scores[study][test_name].pathway.isin(overlap)]
filtered_scores[study] = pd.pivot_table(filtered_scores[study], values='score_adj', index='pathway', columns='celltype')
filtered_scores[study] = filtered_scores[study][cell_types]
if filter:
filtered_scores[study] = filtered_scores[study].loc[filtered_scores[study].index.isin(filtered_pathways)]
shortened_names[study] = [' '.join(name.split(" ")[:-1]) for name in filtered_scores[study].index]
# shortened_names[study] = filtered_scores[study].index
cbar=True if study==list(pathway_scores.keys())[-1] else False
g1 = sb.heatmap(filtered_scores[study], cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g',
linewidths=0.015, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.2}, cbar=cbar,
cbar_ax=None, square=False, ax=axs[i], xticklabels=cell_types, yticklabels=shortened_names[study], mask=None,)
axs[i].tick_params(axis='both', which='major', labelsize=2.5, length=1.5, width=0.5)
g1.set_title(study.split('_')[-1].upper(), fontsize=3)
g1.set_ylabel('', fontsize=4)
g1.set_xlabel('')
cax = g1.figure.axes[-1]
cax.tick_params(labelsize=4, length=1.5, width=0.5, which="major")
# plt.tight_layout()
# if filter:
# plt.savefig(f'../results/pathway_meta_analysis/filtered_overlap_pathway_diff_exp_patterns_{save_suffix}.pdf', bbox_inches='tight')
# else:
plt.suptitle(f"{test_name.split('_')[0].capitalize()}- vs {test_name.split('_')[-1]}-pathology", fontsize=4)
if filter:
plt.savefig(f'results/{test_name}/multi_study_pathway_overlap_filtered.pdf', bbox_inches='tight')
else:
plt.savefig(f'results/{test_name}/multi_study_pathway_overlap_all.pdf', bbox_inches='tight')
plt.show(block=False)
return filtered_scores
def save_plot(fig, ax, save):
if save is not None:
if ax is not None:
if fig is not None:
fig.savefig(save, bbox_inches='tight')
else:
raise ValueError("fig is None, cannot save figure.")
else:
raise ValueError("ax is None, cannot save figure.")
def check_if_matplotlib(return_mpl=False):
if not return_mpl:
try:
import matplotlib.pyplot as plt
except Exception:
raise ImportError('matplotlib is not installed. Please install it with: pip install matplotlib')
return plt
else:
try:
import matplotlib as mpl
except Exception:
raise ImportError('matplotlib is not installed. Please install it with: pip install matplotlib')
return mpl
def check_if_seaborn():
try:
import seaborn as sns
except Exception:
raise ImportError('seaborn is not installed. Please install it with: pip install seaborn')
return sns
def check_if_adjustText():
try:
import adjustText as at
except Exception:
raise ImportError('adjustText is not installed. Please install it with: pip install adjustText')
return at
def filter_limits(df, sign_limit=None, lFCs_limit=None):
"""
Filters a DataFrame by limits of the absolute value of the columns pvals and logFCs.
Parameters
----------
df : pd.DataFrame
The input DataFrame to be filtered.
sign_limit : float, None
The absolute value limit for the p-values. If None, defaults to infinity.
lFCs_limit : float, None
The absolute value limit for the logFCs. If None, defaults to infinity.
Returns
-------
pd.DataFrame
The filtered DataFrame.
"""
# Define limits if not defined
if sign_limit is None:
sign_limit = np.inf
if lFCs_limit is None:
lFCs_limit = np.inf
# Filter by absolute value limits
msk_sign = df['pvals'] < np.abs(sign_limit)
msk_lFCs = np.abs(df['logFCs']) < np.abs(lFCs_limit)
df = df.loc[msk_sign & msk_lFCs]
return df
def plot_volcano(data, x, y, x_label, y_label='-log10(pvals)', annotate=True,
annot_by='top', names=[],
top=5, sign_thr=0.05, lFCs_thr=0.5, sign_limit=None, lFCs_limit=None,
figsize=(7, 5), dpi=100, ax=None, return_fig=False, save=None,
fontsizes={"on_plot": 4}):
"""
Plot logFC and p-values from a long formated data-frame.
Parameters
----------
data : pd.DataFrame
Results of DEA in long format.
x : str
Column name of data storing the logFCs.
y : str
Columns name of data storing the p-values.
x_label: str
Aternate name for LogFC to be included in plot. If None, defaults to x
y_label: str
Aternate name for p-values to be included in plot. If None, defaults to y
annotate: bool
Whether to annotate labels.
annot_by: str
Determines how to annotate the plot for top features. It can be either 'top' or 'name'.
If set to 'top', the top top differentially expressed features will be annotated. If set to 'name',
only the features specified in names will be annotated.
names: list[]:
A list of feature names to be annotated in the plot. Only used if annot_by is set to 'name'.
top : int
Number of top differentially expressed features to show.
sign_thr : float
Significance threshold for p-values.
lFCs_thr : float
Significance threshold for logFCs.
sign_limit : float
Limit of p-values to plot in -log10.
lFCs_limit : float
Limit of logFCs to plot in absolute value.
figsize : tuple
Figure size.
dpi : int
DPI resolution of figure.
ax : Axes, None
A matplotlib axes object. If None returns new figure.
return_fig : bool
Whether to return a Figure object or not.
save : str, None
Path to where to save the plot. Infer the filetype if ending on {`.pdf`, `.png`, `.svg`}.
Returns
-------
fig : Figure, None
If return_fig, returns Figure object.
"""
if x_label is None:
x_label = x
if y_label is None:
y_label = y
# Load plotting packages
plt = check_if_matplotlib()
at = check_if_adjustText()
# Transform sign_thr
sign_thr = -np.log10(sign_thr)
# Extract df
df = data.copy()
df['logFCs'] = df[x]
df['pvals'] = -np.log10(df[y])
# Filter by limits
df = filter_limits(df, sign_limit=sign_limit, lFCs_limit=lFCs_limit)
# Define color by up or down regulation and significance
df['weight'] = 'gray'
up_msk = (df['logFCs'] >= lFCs_thr) & (df['pvals'] >= sign_thr)
dw_msk = (df['logFCs'] <= -lFCs_thr) & (df['pvals'] >= sign_thr)
df.loc[up_msk, 'weight'] = '#D62728'
df.loc[dw_msk, 'weight'] = '#1F77B4'
# Plot
fig = None
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)
n = df.shape[0]
size = 120000 / (100*n)
df.plot.scatter(x='logFCs', y='pvals', c='weight', sharex=False, ax=ax, s=size)
# Draw sign lines
ax.axhline(y=sign_thr, linestyle='--', color="black")
ax.axvline(x=lFCs_thr, linestyle='--', color="black")
ax.axvline(x=-lFCs_thr, linestyle='--', color="black")
# Plot top sign features
signs = df[up_msk | dw_msk].sort_values('pvals', ascending=False)
# Add labels
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
if annotate:
if annot_by == 'top':
signs = signs.iloc[:top]
elif annot_by == 'name':
signs = signs.loc[signs.index.isin(names)]
texts = []
for x, y, s in zip(signs['logFCs'], signs['pvals'], signs.index):
texts.append(ax.text(x, y, s, fontsize=fontsizes['on_plot']))
if len(texts) > 0:
at.adjust_text(texts, arrowprops=dict(arrowstyle='-', color='black'), ax=ax)
save_plot(fig, ax, save)
if return_fig:
return fig