import scipy import warnings #import anndata2ri import pandas as pd import scanpy as sc import numpy as np import seaborn as sb import decoupler as dc from scipy import sparse from anndata import AnnData from tabnanny import verbose import matplotlib.pyplot as plt #from gsva_prep import prep_gsva from typing import Optional, Union from matplotlib.pyplot import rcParams #from statsmodels.stats.multitest import multipletests #from sklearn.model_selection import train_test_split #from rpy2.robjects.conversion import localconverter def rescale_matrix(S, log_scale=False): """ Sums cell-level counts by factors in label vector Parameters ---------- S : np.ndarray, scipy.sparse.csr_matrix or pandas.DataFrame Matrix with read counts (gene x cell) log_scale : bool, optional (default: False) Whether to log-transform the rescaled matrix Returns ------- B : np.ndarray or scipy.sparse.csr_matrix Scaled and log-transformed matrix """ if isinstance(S, pd.DataFrame): S = S.values elif isinstance(S, np.ndarray): pass elif isinstance(S, scipy.sparse.csr_matrix): S = S.toarray() else: raise ValueError('Input S must be a pandas.DataFrame, numpy.ndarray or scipy.sparse.csr_matrix') cs = np.sum(S, axis=0) cs[cs == 0] = 1 B = np.median(cs) * (S / cs) if log_scale: B = np.log1p(B) return B def normalize_default(adata, log_scale=True): """ Normalizes gene expression matrix by total count and scales by median Parameters ---------- adata : AnnData Annotated data matrix. log_scale : bool, optional (default: True) Whether to log-transform the rescaled matrix. Returns ------- adata : AnnData Annotated data matrix with normalized and scaled expression values. """ if 'counts' in adata.layers.keys(): print('normalizaing data using count data in .layers["counts] ') S = adata.layers['counts'] else: print('normaling data using count data in .X') S = adata.X B = rescale_matrix(S, log_scale=log_scale) adata.X = B return adata def normalize_matrix( X: Union[np.ndarray, sparse.spmatrix], top_features_frac: float = 1.0, scale_factor: Union[str, float, int, np.ndarray, None] = "median", transformation: Union[str, None] = "log", anchor_features: Union[np.ndarray, None] = None, ) -> Union[np.ndarray, sparse.spmatrix]: X = X.astype(dtype=np.float64) # Which features (i.e. genes) should we use to compute library sizes? if anchor_features is not None: lib_sizes = np.array(np.mean(X[:, anchor_features], axis=1)) else: if top_features_frac < 1.0: universality = np.array(np.mean(X > 0, axis=0)) selected_features = np.flatnonzero(universality > (1 - top_features_frac)) lib_sizes = np.array(np.mean(X[:, selected_features], axis=1)) else: lib_sizes = np.array(np.mean(X, axis=1)) # Note: mean as opposed to sum # Normalize library sizes if isinstance(X, sparse.spmatrix): X_scaled = X.multiply(1 / lib_sizes) else: try: X_scaled = X / lib_sizes except ValueError: lib_sizes = np.reshape(lib_sizes, (-1, 1)) X_scaled = X / lib_sizes # scale normalized columns if scale_factor == "median": kappa = np.median(np.array(np.sum(X, axis=1) / np.sum(X_scaled, axis=1))) X_scaled_norm = X_scaled * kappa elif isinstance(scale_factor, (int, float)): X_scaled_norm = X_scaled * scale_factor elif isinstance(scale_factor, np.ndarray): if sparse.issparse(X_scaled): X_scaled_norm = X_scaled.multiply(scale_factor) else: X_scaled_norm = X_scaled / scale_factor # For compatibility with C if sparse.issparse(X_scaled_norm): X_scaled_norm = sparse.csc_matrix(X_scaled_norm) # Post-transformation if transformation == "log": X_scaled_norm_trans = np.log1p(X_scaled_norm) elif transformation == "tukey": if sparse.issparse(X_scaled_norm): nnz_idx = X_scaled_norm.nonzero() ii = nnz_idx[0] jj = nnz_idx[1] vv = X_scaled_norm[ii, jj] vv_transformed = np.sqrt(vv) + np.sqrt(1 + vv) X_scaled_norm[ii, jj] = vv_transformed else: X_scaled_norm[X_scaled_norm < 0] = 0 vv = X_scaled_norm[X_scaled_norm != 0] vv_transformed = np.sqrt(vv) + np.sqrt(1 + vv) X_scaled_norm[X_scaled_norm != 0] = vv_transformed # elif transformation == "lsi": # if sparse.issparse(X_scaled_norm): # X_scaled_norm_trans = _an.LSI(X_scaled_norm) # else: # X_scaled_norm_sp = sparse.csc_matrix(X_scaled_norm) # X_scaled_norm_trans = _an.LSI(X_scaled_norm_sp).toarray() else: X_scaled_norm_trans = X_scaled_norm return X_scaled_norm_trans def normalize_actionet( adata: AnnData, layer_key: Optional[str] = None, layer_key_out: Optional[str] = None, top_features_frac: float = 1.0, scale_factor: Union[str, float, int, np.ndarray, None] = "median", transformation: Union[str, None] = "log", anchor_features: Union[np.ndarray, None] = None, copy: Optional[bool] = False, ) -> Optional[AnnData]: adata = adata.copy() if copy else adata if "metadta" in adata.uns.keys(): if "norm_method" in adata.uns["metadata"].keys(): # Already normalized? leave it alone! # return adata if copy else None warnings.warn("AnnData object is prenormalized. Please make sure to use the right assay.") if layer_key is None and "input_assay" in adata.uns["metadata"].keys(): layer_key = adata.uns["metadata"]["input_assay"] if layer_key is not None: if layer_key not in adata.layers.keys(): raise ValueError("Did not find adata.layers['" + layer_key + "']. ") S = adata.layers[layer_key] else: S = adata.X if sparse.issparse(S): UE = set(S.data) else: UE = set(S.flatten()) nonint_count = len(UE.difference(set(np.arange(0, max(UE) + 1)))) if 0 < nonint_count: warnings.warn("Input [count] assay has non-integer values, which looks like a normalized matrix. Please make sure to use the right assay.") S = normalize_matrix( S, anchor_features=anchor_features, top_features_frac=top_features_frac, scale_factor=scale_factor, transformation=transformation, ) adata.uns["metadata"] = {} adata.uns["metadata"]["norm_method"] = "default_top%.2f_%s" % ( top_features_frac, transformation, ) if layer_key_out is not None: adata.uns["metadata"]["default_assay"] = layer_key_out adata.layers[layer_key_out] = S else: adata.uns["metadata"]["default_assay"] = None adata.X = S return adata if copy else None def read_pathways(filename): with open(filename, 'r') as temp_f: col_count = [ len(l.split("\t")) for l in temp_f.readlines() ] column_names = [i for i in range(0, max(col_count))] ### Read csv return pd.read_csv(filename, header=None, delimiter="\t", names=column_names) def filter_expressed_genes_by_celltype(adata: AnnData, threshold: float=0.05, filter_genes_from: str='singlecell', subject_id: str='Subject'): """ Function to filter expressed genes by cell type based on a threshold Parameters: ----------- adata : AnnData object Annotated Data matrix with rows representing genes and columns representing cells. threshold : float, optional (default=0.05) The threshold to use for filtering expressed genes based on the minimum number of cells they are detected in. filter_genes_from: str, optional (default=`singlecell`) Whether to filter genes that meet threshold in pseudobulk data or singlecell data. subject_id (str): a string indicating the column containing individual identifiers. Returns: -------- expressed_genes_per_celltype : pandas DataFrame A dataframe where the rows are the gene names and columns are the cell types, containing only the genes that are expressed in at least the specified percentage of cells for each cell type. """ # Initialize empty dictionaries to store the expressed genes and gene sets per cell type expressed_genes_per_celltype = {} gene_set_per_celltype = {} if filter_genes_from=='pseudobulk': # Get pseudo-bulk profile adata = dc.get_pseudobulk(adata, sample_col=subject_id, groups_col='cell_type', layer='counts', mode='sum', min_cells=0, min_counts=0 ) # Loop through each unique cell type in the input AnnData object for cell_type in adata.obs.cell_type.unique(): expressed_genes_per_celltype[cell_type] = dc.filter_by_prop(adata[adata.obs['cell_type']==cell_type], min_prop=threshold) elif filter_genes_from=='singlecell': # Loop through each unique cell type in the input AnnData object for cell_type in adata.obs.cell_type.unique(): # Calculate the number of cells based on the specified threshold percent = threshold num_cells = round(percent*len(adata[adata.obs['cell_type']==cell_type])) # Filter genes based on minimum number of cells and store the resulting gene names expressed_genes_per_celltype[cell_type], _ = sc.pp.filter_genes(adata[adata.obs.cell_type==cell_type].layers['counts'], min_cells=num_cells, inplace=False) expressed_genes_per_celltype[cell_type] = list(adata.var_names[expressed_genes_per_celltype[cell_type]]) # Convert the dictionary of expressed genes per cell type to a Pandas DataFrame expressed_genes_per_celltype = pd.DataFrame.from_dict(expressed_genes_per_celltype, orient='index').transpose() return expressed_genes_per_celltype def filter_lowly_exp_genes(expressed: pd.DataFrame, all_paths: pd.DataFrame, threshold: float = 0.33): """ Filters lowly expressed gene sets based on a threshold and pathway membership. Parameters: ----------- expressed: pandas.DataFrame A DataFrame of expressed genes with cell types as columns and gene IDs as rows. all_paths: pandas.DataFrame A DataFrame of gene sets with pathways as columns and gene IDs as rows. threshold: float, optional (default=0.33) A proportion threshold used to filter gene sets based on their expression in each cell type. Returns: -------- gene_set_per_celltype: dict of pandas.DataFrame A dictionary of gene sets per cell type, with cell type names as keys and gene set dataframes as values. Each gene set dataframe has three columns: 'description', 'member', and 'name'. """ # Initialize empty dictionaries to store the gene sets and gene sets per cell type gene_set = {} gene_set_per_celltype = {} # Loop through each cell type in the input Pandas DataFrame of expressed genes for cell_type in expressed.columns: # Determine which pathways have a proportion of genes above the specified threshold index = [sum(all_paths[x].isin(expressed[cell_type]))/len(all_paths[x]) > threshold for x in all_paths.columns] # Filter pathways based on threshold and store the resulting gene sets p = all_paths.loc[:, index] x = {y: pd.Series(list(set(expressed[cell_type]).intersection(set(p[y])))) for y in p.columns} x = {k: v for k, v in x.items() if not v.empty} gene_set[cell_type] = x # Convert the gene sets to Pandas DataFrames and store them in a dictionary by cell type gene_set_per_celltype[cell_type] = pd.DataFrame(columns=['description', 'member', 'name']) for pathway, gene_list in gene_set[cell_type].items(): df = pd.DataFrame(columns=['description', 'member', 'name']) df['member'] = gene_list df['name'] = pathway df['description'] = pathway.split(" ")[-1] gene_set_per_celltype[cell_type] = pd.concat([gene_set_per_celltype[cell_type], df], join='outer', ignore_index=True) # Sort the resulting gene sets by description and member gene_set_per_celltype[cell_type].sort_index(axis=1, inplace=True) gene_set_per_celltype[cell_type].sort_index(axis=0, inplace=True) return gene_set_per_celltype def get_ind_level_ave(adata: AnnData, subject_id: str = 'Subject', method: str = "agg_x_num", expressed_genes_per_celltype: dict = {}, filter_genes_at_threshold: bool = True): """ Get averaged expression data for each cell type and individual in an AnnData object. Args: adata (AnnData): An AnnData object with read counts (gene x cell). subject_id (str): a string indicating the column containing individual identifiers. method (str): a string indicating the method to be used. The default is "agg_x_num". filter_genes_at_threshold (bool): A boolean indicating whether to filter genes based on threshold. The default is True. expressed_genes_per_celltype (float): A dictionary of the genes to be filtered for each celltype. Returns: Dictionary: A dictionary of data frames with averaged expression data for each cell type and individual. """ if method == "agg_x_norm": avs_logcounts_cellxind = {} # loop over each unique cell type in the annotation metadata for cell_type in adata.obs.cell_type.unique(): # filter genes based on threshold if filter_genes_at_threshold: adata_temp = adata[adata.obs.cell_type==cell_type].copy() # sc.pp.filter_genes(adata_temp, min_cells=gene_celltype_threshold*adata_temp.n_obs) adata_temp = adata_temp[:, adata_temp.var_names.isin(expressed_genes_per_celltype[cell_type].tolist())] else: adata_temp = adata.copy() # Get pseudo-bulk profile pdata = dc.get_pseudobulk(adata_temp, sample_col=subject_id, groups_col='cell_type', layer='counts', mode='sum', min_cells=0, min_counts=0) # genes = dc.filter_by_prop(pdata, min_prop=0.05, min_smpls=1) # pdata = pdata[:, genes].copy() # Normalize and log transform # sc.pp.normalize_total(pdata, 1e06) # sc.pp.log1p(pdata) pdata.layers['counts'] = pdata.X pdata = normalize_actionet(pdata, layer_key = 'counts', layer_key_out = None, top_features_frac = 1.0, scale_factor = "median", transformation = "log", anchor_features = None, copy = True) # Store the log-normalized, averaged expression data for each individual and cell type avs_logcounts_cellxind[cell_type] = pd.DataFrame(pdata.X.T, columns=pdata.obs[subject_id], index=pdata.var_names) del adata_temp, pdata elif method == 'norm_x_agg': def sum_counts(counts, label, cell_labels, gene_labels): """ Sums cell-level counts by factors in label vector. Args: counts (AnnData): An AnnData object with read counts (gene x cell). label (pd.DataFrame): Variable of interest by which to sum counts. cell_labels (pd.Index): Vector of cell labels. gene_labels (pd.Index): Vector of gene labels. Returns: Dictionary: A dictionary with the following keys: - 'summed_counts': A data frame with summed counts. - 'ncells': A data frame with the number of cells used per summation. """ # Create a data frame with the label vector and add a column of 1s for counting. label_df = pd.DataFrame(label) label_df.columns = ['ID'] label_df['index'] = 1 # Add a column for cell type and pivot the data frame to create a matrix of counts. label_df['celltype'] = cell_labels label_df = label_df.pivot_table(index='celltype', columns='ID', values='index', aggfunc=np.sum, fill_value=0) label_df = label_df.astype(float) # Multiply the counts matrix by the gene expression matrix to get summed counts. summed_counts = pd.DataFrame(counts.X.T @ label_df.values, index = gene_labels, columns= label_df.columns) # Sum the number of cells used for each summation. ncells = label_df.sum() # Return the summed counts and number of cells as a dictionary. return {'summed_counts': summed_counts, 'ncells': ncells} # Get metadata from the AnnData object. meta = adata.obs # Get metadata # Create a data frame of labels by combining cell type and individual metadata fields. # Sum counts by individual labels = pd.DataFrame(meta['cell_type'].astype(str) + '_' + meta[subject_id].astype(str), columns=['individual']) # Sum counts by individual and store the results in a dictionary. summed_logcounts_cellxind = sum_counts(adata, labels, adata.obs_names, adata.var_names) # Calculate averages for each cell type and individual and store the results in a dictionary. # Get averages corresponding to both count matrices avs_logcounts = np.array(summed_logcounts_cellxind['summed_counts'].values) / np.array(summed_logcounts_cellxind['ncells'].values) # avs_logcounts = np.array(summed_logcounts_cellxind['summed_counts'].values) avs_logcounts = pd.DataFrame(avs_logcounts, index = summed_logcounts_cellxind['summed_counts'].index, columns=summed_logcounts_cellxind['summed_counts'].columns) # Split the averages by cell type and individual and store the results in a dictionary. # Split column names into two parts: cell type and individual x = [col.split('_') for col in avs_logcounts.columns] celltype = [col[0] for col in x] individual = [col[1] for col in x] # Get unique cell types in the dataset celltype_unique = np.unique(celltype) # Create an empty dictionary to store the average counts for each cell type and individual avs_by_ind_out = {} # Loop over the unique cell types and subset the average counts for each cell type and individual for i in celltype_unique: index = np.array(celltype)==i df = avs_logcounts.loc[:, index] df.columns = np.array(individual)[index] avs_by_ind_out[i] = df if filter_genes_at_threshold: # num_cells = round(gene_celltype_threshold*len(adata[adata.obs['cell_type']==cell_type])) # # Filter genes based on minimum number of cells and store the resulting gene names # gene_mask, _ = sc.pp.filter_genes(adata[adata.obs.cell_type==cell_type].layers['counts'], # min_cells=num_cells, # inplace=False) # genes = list(adata.var_names[gene_mask]) avs_by_ind_out[i] = avs_by_ind_out[i].loc[expressed_genes_per_celltype[i], :] else: adata = adata.copy() # Store the dictionary of average counts for each cell type and individual avs_logcounts_cellxind = avs_by_ind_out # Return the dictionary of average counts for each cell type and individual return avs_logcounts_cellxind def plot_and_select_top_deps(all_pathways: pd.DataFrame(), list_of_paths_to_annotate: list = [], save_name='cell_type_specific', save_prefix: str = 'mathys_pfc', filter: bool=False, cell_type_specific: bool = True, test_name: str = ''): if cell_type_specific: # Plot certain cell_type specific pathways collated_df = pd.DataFrame(all_pathways.groupby(all_pathways.index).agg({'score_adj': list, 'celltype': list, 'logFC': list, 'P.Value': list, 'shortened': list, 'highlight': list})) # filter pathways only expressed in one cell type mask = collated_df["celltype"].apply(len) == 1 df = collated_df[mask] # create pathway by cell type pivot table scores_table = pd.pivot_table(all_pathways, values='score_adj', index='pathway', columns='celltype') scores_table = scores_table.loc[df.index] scores_table['shortened'] = df.shortened.apply(lambda x: x[0]) scores_table['highlight'] = df.highlight.apply(lambda x: x[0]) scores_table.sort_values(by=[cell_type for cell_type in all_pathways.celltype.unique()], inplace=True) # drop pathways with same shortened names ?? scores_table = scores_table.drop_duplicates(subset='shortened', keep='first') ###### Plot Cell type specific data if filter: xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial'] # select only pathways that should be visualized shortened_names = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)]['shortened'] scores_table = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)] n_rows = len(scores_table) fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained') fig.tight_layout() # order table by cell type name # scores_table = scores_table.reindex(columns=['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', # 'OPC', 'Microglia']) scores_table = scores_table[xticks] g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g', linewidths=0.15, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.2}, cbar_ax=None, square=False,ax=ax1, xticklabels=xticks, yticklabels=shortened_names, mask=None,) cax = g1.figure.axes[-1] g1.set_title(f'Select Cell-type-specific Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology', fontsize=3) g1.set_ylabel('') g1.set_xlabel('') ax1.tick_params(axis='both', which='major', labelsize=4, length=1.5, width=0.5) cax.tick_params(labelsize=4, length=1.5, width=0.5, which="major") plt.tight_layout() plt.savefig(f'results/{test_name}/{save_prefix}_filtered_{save_name}_diff_exp_paths.pdf', bbox_inches='tight') plt.show(block=False) else: xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial'] scores_table = scores_table[scores_table.shortened!='None'] yticklabels = scores_table['shortened'] # order table by cell type name scores_table = scores_table[xticks] n_rows = len(scores_table) fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained') fig.tight_layout() g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g', linewidths=0.07, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.1}, cbar_ax=None, square=False, ax=ax1, xticklabels=xticks, yticklabels=yticklabels, mask=None,) cax = g1.figure.axes[-1] g1.set_title(f'All Cell-type-specific Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology', fontsize=3) g1.set_ylabel('') g1.set_xlabel('') ax1.tick_params(axis='both', which='major', labelsize=2, length=1.5, width=0.25) cax.tick_params(labelsize=4, length=1.5, width=0.25, which="major") plt.tight_layout() #plt.savefig(f'../results/{test_name}/{save_prefix}_all_{save_name}_diff_exp_paths.pdf', bbox_inches='tight') plt.savefig(f'results/{test_name}/{save_prefix}_all_{save_name}_diff_exp_paths.pdf', bbox_inches='tight') plt.show(block=False) else: # Plot certain cell_type specific pathways collated_df = pd.DataFrame(all_pathways.groupby(all_pathways.index).agg({'score_adj': list, 'celltype': list, 'logFC': list, 'P.Value': list, 'shortened': list, 'highlight': list})) # filte pathways only expressed in one cell type mask = collated_df["celltype"].apply(len) > 1 df = collated_df[mask] # create pathway by cell type pivot table scores_table = pd.pivot_table(all_pathways, values='score_adj', index='pathway', columns='celltype') scores_table = scores_table.loc[df.index] scores_table['shortened'] = df.shortened.apply(lambda x: x[0]) scores_table['highlight'] = df.highlight.apply(lambda x: x[0]) scores_table.sort_values(by=[cell_type for cell_type in all_pathways.celltype.unique()], inplace=True) # drop pathways with same shortened names ?? scores_table = scores_table.drop_duplicates(subset='shortened', keep='first') ###### Plot Cell type specific data if filter: xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial'] # select only pathways that should be visualized shortened_names = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)]['shortened'] scores_table = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)] # order table by cell type name scores_table = scores_table[xticks] n_rows = len(scores_table) fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained') fig.tight_layout() g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g', linewidths=0.15, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.2}, cbar_ax=None, square=False,ax=ax1, xticklabels=xticks, yticklabels=shortened_names, mask=None,) cax = g1.figure.axes[-1] g1.set_title(f'Select Shared Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology', fontsize=3) g1.set_ylabel('') g1.set_xlabel('') ax1.tick_params(axis='both', which='major', labelsize=4, length=1.5, width=0.5) cax.tick_params(labelsize=4, length=1.5, width=0.5, which="major") plt.tight_layout() plt.savefig(f'results/{test_name}/{save_prefix}_filtered_{save_name}_diff_exp_paths.pdf', bbox_inches='tight') plt.show(block=False) else: xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial'] scores_table = scores_table[scores_table.shortened!='None'] yticklabels = scores_table['shortened'] # order table by cell type name scores_table = scores_table[xticks] n_rows = len(scores_table) fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained') fig.tight_layout() g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g', linewidths=0.07, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.1}, cbar_ax=None, square=False, ax=ax1, xticklabels=xticks, yticklabels=yticklabels, mask=None,) cax = g1.figure.axes[-1] g1.set_title(f'All Broad Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology', fontsize=3) g1.set_ylabel('') g1.set_xlabel('') ax1.tick_params(axis='both', which='major', labelsize=2, length=1.5, width=0.25) cax.tick_params(labelsize=4, length=1.5, width=0.25, which="major") plt.tight_layout() plt.savefig(f'results/{test_name}/{save_prefix}_all_{save_name}_diff_exp_paths.pdf', bbox_inches='tight') plt.show(block=False) return def multi_study_pathway_overlap(pathway_scores: dict = {}, filtered_pathways: list = [], cell_types: list = ["Excitatory", "Inhibitory", "Astrocyte", "Microglia", "Oligodendrocyte", "OPC", "Endothelial"], test_name: str = 'ad_vs_no', top_n: int = 10, pathways: list = [], filter: bool = False, save_suffix: str = 'ad_vs_no', method: str = 'cell_type_overlap'): """ This function generates a heatmap of the overlapping pathways across multiple studies. The heatmap displays the adjusted pathway scores across different cell types for each pathway in each study. The function also returns a dictionary of filtered scores that contain only the overlapping pathways across the studies. Parameters: ----------- pathway_scores : dict A dictionary of pathway scores for different studies. filtered_pathways : list, optional A list of pathways to be used as a filter. cell_types : list, optional A list of cell types to be included in the heatmap. Default is ["Excitatory", "Inhibitory", "Astrocyte", "Microglia", "Oligodendrocyte", "OPC", "Endothelial"]. test_name : str, optional The name of the test being compared. Default is 'ad_vs_no'. top_n : int, optional The number of top pathways to be included in the heatmap. Default is 10. pathways : list, optional A list of pathways to be included in the heatmap. If not empty, only these pathways will be included in the heatmap. Default is []. filter : bool, optional If True, the function will filter out pathways that are not present in the filtered_pathways list. Default is False. save_suffix : str, optional A suffix to be added to the output file name. Default is 'ad_vs_no'. method : str, optional The method used to generate the overlap. 'cell_type_overlap' will generate the overlap based on cell type. 'global_overlap' will generate the overlap based on all pathways in the studies. Default is 'cell_type_overlap'. Returns: -------- filtered_scores : dict A dictionary of pathway scores for the overlapping pathways across the studies. Examples: --------- >>> multi_study_pathway_overlap(pathway_scores, filtered_pathways=['pathway1', 'pathway2'], cell_types=['Excitatory', 'Astrocyte'], test_name='ad_vs_no', filter=True) """ for i, study in enumerate(pathway_scores.keys()): pathway_scores[study][test_name] = pathway_scores[study][test_name][pathway_scores[study][test_name].celltype.isin(cell_types)] if method == "cell_type_overlap": overlap = [] for cell_type in cell_types: eval_string = [] for i, study in enumerate(pathway_scores.keys()): eval_string.append(f'set(pathway_scores["{study}"]["{test_name}"][pathway_scores["{study}"]["{test_name}"].celltype=="{cell_type}"].pathway)') eval_string = '&'.join(eval_string) overlap.extend(list(eval(eval_string))) elif method == "global_overlap": overlap = [] eval_string = [] for i, study in enumerate(pathway_scores.keys()): eval_string.append(f'set(pathway_scores["{study}"]["{test_name}"].pathway)') eval_string = '&'.join(eval_string) overlap.extend(list(eval(eval_string))) if filter: n_rows = len(set(filtered_pathways) & set(overlap)) else: n_rows = len(overlap) fig, axs = plt.subplots(1, 3, figsize=(3.5, n_rows*0.095), gridspec_kw={'width_ratios':[0.85, 0.85, 1]}, sharex=False, sharey=True, layout='constrained') fig.tight_layout() filtered_scores = {} shortened_names = {} for i, study in enumerate(pathway_scores.keys()): filtered_scores[study] = pathway_scores[study][test_name][pathway_scores[study][test_name].pathway.isin(overlap)] filtered_scores[study] = pd.pivot_table(filtered_scores[study], values='score_adj', index='pathway', columns='celltype') filtered_scores[study] = filtered_scores[study][cell_types] if filter: filtered_scores[study] = filtered_scores[study].loc[filtered_scores[study].index.isin(filtered_pathways)] shortened_names[study] = [' '.join(name.split(" ")[:-1]) for name in filtered_scores[study].index] # shortened_names[study] = filtered_scores[study].index cbar=True if study==list(pathway_scores.keys())[-1] else False g1 = sb.heatmap(filtered_scores[study], cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g', linewidths=0.015, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.2}, cbar=cbar, cbar_ax=None, square=False, ax=axs[i], xticklabels=cell_types, yticklabels=shortened_names[study], mask=None,) axs[i].tick_params(axis='both', which='major', labelsize=2.5, length=1.5, width=0.5) g1.set_title(study.split('_')[-1].upper(), fontsize=3) g1.set_ylabel('', fontsize=4) g1.set_xlabel('') cax = g1.figure.axes[-1] cax.tick_params(labelsize=4, length=1.5, width=0.5, which="major") # plt.tight_layout() # if filter: # plt.savefig(f'../results/pathway_meta_analysis/filtered_overlap_pathway_diff_exp_patterns_{save_suffix}.pdf', bbox_inches='tight') # else: plt.suptitle(f"{test_name.split('_')[0].capitalize()}- vs {test_name.split('_')[-1]}-pathology", fontsize=4) if filter: plt.savefig(f'results/{test_name}/multi_study_pathway_overlap_filtered.pdf', bbox_inches='tight') else: plt.savefig(f'results/{test_name}/multi_study_pathway_overlap_all.pdf', bbox_inches='tight') plt.show(block=False) return filtered_scores def save_plot(fig, ax, save): if save is not None: if ax is not None: if fig is not None: fig.savefig(save, bbox_inches='tight') else: raise ValueError("fig is None, cannot save figure.") else: raise ValueError("ax is None, cannot save figure.") def check_if_matplotlib(return_mpl=False): if not return_mpl: try: import matplotlib.pyplot as plt except Exception: raise ImportError('matplotlib is not installed. Please install it with: pip install matplotlib') return plt else: try: import matplotlib as mpl except Exception: raise ImportError('matplotlib is not installed. Please install it with: pip install matplotlib') return mpl def check_if_seaborn(): try: import seaborn as sns except Exception: raise ImportError('seaborn is not installed. Please install it with: pip install seaborn') return sns def check_if_adjustText(): try: import adjustText as at except Exception: raise ImportError('adjustText is not installed. Please install it with: pip install adjustText') return at def filter_limits(df, sign_limit=None, lFCs_limit=None): """ Filters a DataFrame by limits of the absolute value of the columns pvals and logFCs. Parameters ---------- df : pd.DataFrame The input DataFrame to be filtered. sign_limit : float, None The absolute value limit for the p-values. If None, defaults to infinity. lFCs_limit : float, None The absolute value limit for the logFCs. If None, defaults to infinity. Returns ------- pd.DataFrame The filtered DataFrame. """ # Define limits if not defined if sign_limit is None: sign_limit = np.inf if lFCs_limit is None: lFCs_limit = np.inf # Filter by absolute value limits msk_sign = df['pvals'] < np.abs(sign_limit) msk_lFCs = np.abs(df['logFCs']) < np.abs(lFCs_limit) df = df.loc[msk_sign & msk_lFCs] return df def plot_volcano(data, x, y, x_label, y_label='-log10(pvals)', annotate=True, annot_by='top', names=[], top=5, sign_thr=0.05, lFCs_thr=0.5, sign_limit=None, lFCs_limit=None, figsize=(7, 5), dpi=100, ax=None, return_fig=False, save=None, fontsizes={"on_plot": 4}): """ Plot logFC and p-values from a long formated data-frame. Parameters ---------- data : pd.DataFrame Results of DEA in long format. x : str Column name of data storing the logFCs. y : str Columns name of data storing the p-values. x_label: str Aternate name for LogFC to be included in plot. If None, defaults to x y_label: str Aternate name for p-values to be included in plot. If None, defaults to y annotate: bool Whether to annotate labels. annot_by: str Determines how to annotate the plot for top features. It can be either 'top' or 'name'. If set to 'top', the top top differentially expressed features will be annotated. If set to 'name', only the features specified in names will be annotated. names: list[]: A list of feature names to be annotated in the plot. Only used if annot_by is set to 'name'. top : int Number of top differentially expressed features to show. sign_thr : float Significance threshold for p-values. lFCs_thr : float Significance threshold for logFCs. sign_limit : float Limit of p-values to plot in -log10. lFCs_limit : float Limit of logFCs to plot in absolute value. figsize : tuple Figure size. dpi : int DPI resolution of figure. ax : Axes, None A matplotlib axes object. If None returns new figure. return_fig : bool Whether to return a Figure object or not. save : str, None Path to where to save the plot. Infer the filetype if ending on {`.pdf`, `.png`, `.svg`}. Returns ------- fig : Figure, None If return_fig, returns Figure object. """ if x_label is None: x_label = x if y_label is None: y_label = y # Load plotting packages plt = check_if_matplotlib() at = check_if_adjustText() # Transform sign_thr sign_thr = -np.log10(sign_thr) # Extract df df = data.copy() df['logFCs'] = df[x] df['pvals'] = -np.log10(df[y]) # Filter by limits df = filter_limits(df, sign_limit=sign_limit, lFCs_limit=lFCs_limit) # Define color by up or down regulation and significance df['weight'] = 'gray' up_msk = (df['logFCs'] >= lFCs_thr) & (df['pvals'] >= sign_thr) dw_msk = (df['logFCs'] <= -lFCs_thr) & (df['pvals'] >= sign_thr) df.loc[up_msk, 'weight'] = '#D62728' df.loc[dw_msk, 'weight'] = '#1F77B4' # Plot fig = None if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) n = df.shape[0] size = 120000 / (100*n) df.plot.scatter(x='logFCs', y='pvals', c='weight', sharex=False, ax=ax, s=size) # Draw sign lines ax.axhline(y=sign_thr, linestyle='--', color="black") ax.axvline(x=lFCs_thr, linestyle='--', color="black") ax.axvline(x=-lFCs_thr, linestyle='--', color="black") # Plot top sign features signs = df[up_msk | dw_msk].sort_values('pvals', ascending=False) # Add labels ax.set_ylabel(y_label) ax.set_xlabel(x_label) if annotate: if annot_by == 'top': signs = signs.iloc[:top] elif annot_by == 'name': signs = signs.loc[signs.index.isin(names)] texts = [] for x, y, s in zip(signs['logFCs'], signs['pvals'], signs.index): texts.append(ax.text(x, y, s, fontsize=fontsizes['on_plot'])) if len(texts) > 0: at.adjust_text(texts, arrowprops=dict(arrowstyle='-', color='black'), ax=ax) save_plot(fig, ax, save) if return_fig: return fig