Spaces:
Sleeping
Sleeping
File size: 42,375 Bytes
16c6962 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 |
import scipy
import warnings
#import anndata2ri
import pandas as pd
import scanpy as sc
import numpy as np
import seaborn as sb
import decoupler as dc
from scipy import sparse
from anndata import AnnData
from tabnanny import verbose
import matplotlib.pyplot as plt
#from gsva_prep import prep_gsva
from typing import Optional, Union
from matplotlib.pyplot import rcParams
#from statsmodels.stats.multitest import multipletests
#from sklearn.model_selection import train_test_split
#from rpy2.robjects.conversion import localconverter
def rescale_matrix(S, log_scale=False):
"""
Sums cell-level counts by factors in label vector
Parameters
----------
S : np.ndarray, scipy.sparse.csr_matrix or pandas.DataFrame
Matrix with read counts (gene x cell)
log_scale : bool, optional (default: False)
Whether to log-transform the rescaled matrix
Returns
-------
B : np.ndarray or scipy.sparse.csr_matrix
Scaled and log-transformed matrix
"""
if isinstance(S, pd.DataFrame):
S = S.values
elif isinstance(S, np.ndarray):
pass
elif isinstance(S, scipy.sparse.csr_matrix):
S = S.toarray()
else:
raise ValueError('Input S must be a pandas.DataFrame, numpy.ndarray or scipy.sparse.csr_matrix')
cs = np.sum(S, axis=0)
cs[cs == 0] = 1
B = np.median(cs) * (S / cs)
if log_scale:
B = np.log1p(B)
return B
def normalize_default(adata, log_scale=True):
"""
Normalizes gene expression matrix by total count and scales by median
Parameters
----------
adata : AnnData
Annotated data matrix.
log_scale : bool, optional (default: True)
Whether to log-transform the rescaled matrix.
Returns
-------
adata : AnnData
Annotated data matrix with normalized and scaled expression values.
"""
if 'counts' in adata.layers.keys():
print('normalizaing data using count data in .layers["counts] ')
S = adata.layers['counts']
else:
print('normaling data using count data in .X')
S = adata.X
B = rescale_matrix(S, log_scale=log_scale)
adata.X = B
return adata
def normalize_matrix(
X: Union[np.ndarray, sparse.spmatrix],
top_features_frac: float = 1.0,
scale_factor: Union[str, float, int, np.ndarray, None] = "median",
transformation: Union[str, None] = "log",
anchor_features: Union[np.ndarray, None] = None,
) -> Union[np.ndarray, sparse.spmatrix]:
X = X.astype(dtype=np.float64)
# Which features (i.e. genes) should we use to compute library sizes?
if anchor_features is not None:
lib_sizes = np.array(np.mean(X[:, anchor_features], axis=1))
else:
if top_features_frac < 1.0:
universality = np.array(np.mean(X > 0, axis=0))
selected_features = np.flatnonzero(universality > (1 - top_features_frac))
lib_sizes = np.array(np.mean(X[:, selected_features], axis=1))
else:
lib_sizes = np.array(np.mean(X, axis=1))
# Note: mean as opposed to sum
# Normalize library sizes
if isinstance(X, sparse.spmatrix):
X_scaled = X.multiply(1 / lib_sizes)
else:
try:
X_scaled = X / lib_sizes
except ValueError:
lib_sizes = np.reshape(lib_sizes, (-1, 1))
X_scaled = X / lib_sizes
# scale normalized columns
if scale_factor == "median":
kappa = np.median(np.array(np.sum(X, axis=1) / np.sum(X_scaled, axis=1)))
X_scaled_norm = X_scaled * kappa
elif isinstance(scale_factor, (int, float)):
X_scaled_norm = X_scaled * scale_factor
elif isinstance(scale_factor, np.ndarray):
if sparse.issparse(X_scaled):
X_scaled_norm = X_scaled.multiply(scale_factor)
else:
X_scaled_norm = X_scaled / scale_factor
# For compatibility with C
if sparse.issparse(X_scaled_norm):
X_scaled_norm = sparse.csc_matrix(X_scaled_norm)
# Post-transformation
if transformation == "log":
X_scaled_norm_trans = np.log1p(X_scaled_norm)
elif transformation == "tukey":
if sparse.issparse(X_scaled_norm):
nnz_idx = X_scaled_norm.nonzero()
ii = nnz_idx[0]
jj = nnz_idx[1]
vv = X_scaled_norm[ii, jj]
vv_transformed = np.sqrt(vv) + np.sqrt(1 + vv)
X_scaled_norm[ii, jj] = vv_transformed
else:
X_scaled_norm[X_scaled_norm < 0] = 0
vv = X_scaled_norm[X_scaled_norm != 0]
vv_transformed = np.sqrt(vv) + np.sqrt(1 + vv)
X_scaled_norm[X_scaled_norm != 0] = vv_transformed
# elif transformation == "lsi":
# if sparse.issparse(X_scaled_norm):
# X_scaled_norm_trans = _an.LSI(X_scaled_norm)
# else:
# X_scaled_norm_sp = sparse.csc_matrix(X_scaled_norm)
# X_scaled_norm_trans = _an.LSI(X_scaled_norm_sp).toarray()
else:
X_scaled_norm_trans = X_scaled_norm
return X_scaled_norm_trans
def normalize_actionet(
adata: AnnData,
layer_key: Optional[str] = None,
layer_key_out: Optional[str] = None,
top_features_frac: float = 1.0,
scale_factor: Union[str, float, int, np.ndarray, None] = "median",
transformation: Union[str, None] = "log",
anchor_features: Union[np.ndarray, None] = None,
copy: Optional[bool] = False,
) -> Optional[AnnData]:
adata = adata.copy() if copy else adata
if "metadta" in adata.uns.keys():
if "norm_method" in adata.uns["metadata"].keys(): # Already normalized? leave it alone!
# return adata if copy else None
warnings.warn("AnnData object is prenormalized. Please make sure to use the right assay.")
if layer_key is None and "input_assay" in adata.uns["metadata"].keys():
layer_key = adata.uns["metadata"]["input_assay"]
if layer_key is not None:
if layer_key not in adata.layers.keys():
raise ValueError("Did not find adata.layers['" + layer_key + "']. ")
S = adata.layers[layer_key]
else:
S = adata.X
if sparse.issparse(S):
UE = set(S.data)
else:
UE = set(S.flatten())
nonint_count = len(UE.difference(set(np.arange(0, max(UE) + 1))))
if 0 < nonint_count:
warnings.warn("Input [count] assay has non-integer values, which looks like a normalized matrix. Please make sure to use the right assay.")
S = normalize_matrix(
S,
anchor_features=anchor_features,
top_features_frac=top_features_frac,
scale_factor=scale_factor,
transformation=transformation,
)
adata.uns["metadata"] = {}
adata.uns["metadata"]["norm_method"] = "default_top%.2f_%s" % (
top_features_frac,
transformation,
)
if layer_key_out is not None:
adata.uns["metadata"]["default_assay"] = layer_key_out
adata.layers[layer_key_out] = S
else:
adata.uns["metadata"]["default_assay"] = None
adata.X = S
return adata if copy else None
def read_pathways(filename):
with open(filename, 'r') as temp_f:
col_count = [ len(l.split("\t")) for l in temp_f.readlines() ]
column_names = [i for i in range(0, max(col_count))]
### Read csv
return pd.read_csv(filename, header=None, delimiter="\t", names=column_names)
def filter_expressed_genes_by_celltype(adata: AnnData,
threshold: float=0.05,
filter_genes_from: str='singlecell',
subject_id: str='Subject'):
"""
Function to filter expressed genes by cell type based on a threshold
Parameters:
-----------
adata : AnnData object
Annotated Data matrix with rows representing genes and columns representing cells.
threshold : float, optional (default=0.05)
The threshold to use for filtering expressed genes based on the minimum number of cells they are detected in.
filter_genes_from: str, optional (default=`singlecell`)
Whether to filter genes that meet threshold in pseudobulk data or singlecell data.
subject_id (str): a string indicating the column containing individual identifiers.
Returns:
--------
expressed_genes_per_celltype : pandas DataFrame
A dataframe where the rows are the gene names and columns are the cell types,
containing only the genes that are expressed in at least the specified percentage of cells for each cell type.
"""
# Initialize empty dictionaries to store the expressed genes and gene sets per cell type
expressed_genes_per_celltype = {}
gene_set_per_celltype = {}
if filter_genes_from=='pseudobulk':
# Get pseudo-bulk profile
adata = dc.get_pseudobulk(adata,
sample_col=subject_id,
groups_col='cell_type',
layer='counts',
mode='sum',
min_cells=0,
min_counts=0
)
# Loop through each unique cell type in the input AnnData object
for cell_type in adata.obs.cell_type.unique():
expressed_genes_per_celltype[cell_type] = dc.filter_by_prop(adata[adata.obs['cell_type']==cell_type],
min_prop=threshold)
elif filter_genes_from=='singlecell':
# Loop through each unique cell type in the input AnnData object
for cell_type in adata.obs.cell_type.unique():
# Calculate the number of cells based on the specified threshold
percent = threshold
num_cells = round(percent*len(adata[adata.obs['cell_type']==cell_type]))
# Filter genes based on minimum number of cells and store the resulting gene names
expressed_genes_per_celltype[cell_type], _ = sc.pp.filter_genes(adata[adata.obs.cell_type==cell_type].layers['counts'],
min_cells=num_cells, inplace=False)
expressed_genes_per_celltype[cell_type] = list(adata.var_names[expressed_genes_per_celltype[cell_type]])
# Convert the dictionary of expressed genes per cell type to a Pandas DataFrame
expressed_genes_per_celltype = pd.DataFrame.from_dict(expressed_genes_per_celltype, orient='index').transpose()
return expressed_genes_per_celltype
def filter_lowly_exp_genes(expressed: pd.DataFrame,
all_paths: pd.DataFrame,
threshold: float = 0.33):
"""
Filters lowly expressed gene sets based on a threshold and pathway membership.
Parameters:
-----------
expressed: pandas.DataFrame
A DataFrame of expressed genes with cell types as columns and gene IDs as rows.
all_paths: pandas.DataFrame
A DataFrame of gene sets with pathways as columns and gene IDs as rows.
threshold: float, optional (default=0.33)
A proportion threshold used to filter gene sets based on their expression in each cell type.
Returns:
--------
gene_set_per_celltype: dict of pandas.DataFrame
A dictionary of gene sets per cell type, with cell type names as keys and gene set dataframes as values.
Each gene set dataframe has three columns: 'description', 'member', and 'name'.
"""
# Initialize empty dictionaries to store the gene sets and gene sets per cell type
gene_set = {}
gene_set_per_celltype = {}
# Loop through each cell type in the input Pandas DataFrame of expressed genes
for cell_type in expressed.columns:
# Determine which pathways have a proportion of genes above the specified threshold
index = [sum(all_paths[x].isin(expressed[cell_type]))/len(all_paths[x]) > threshold for x in all_paths.columns]
# Filter pathways based on threshold and store the resulting gene sets
p = all_paths.loc[:, index]
x = {y: pd.Series(list(set(expressed[cell_type]).intersection(set(p[y])))) for y in p.columns}
x = {k: v for k, v in x.items() if not v.empty}
gene_set[cell_type] = x
# Convert the gene sets to Pandas DataFrames and store them in a dictionary by cell type
gene_set_per_celltype[cell_type] = pd.DataFrame(columns=['description', 'member', 'name'])
for pathway, gene_list in gene_set[cell_type].items():
df = pd.DataFrame(columns=['description', 'member', 'name'])
df['member'] = gene_list
df['name'] = pathway
df['description'] = pathway.split(" ")[-1]
gene_set_per_celltype[cell_type] = pd.concat([gene_set_per_celltype[cell_type], df], join='outer', ignore_index=True)
# Sort the resulting gene sets by description and member
gene_set_per_celltype[cell_type].sort_index(axis=1, inplace=True)
gene_set_per_celltype[cell_type].sort_index(axis=0, inplace=True)
return gene_set_per_celltype
def get_ind_level_ave(adata: AnnData, subject_id: str = 'Subject', method: str = "agg_x_num",
expressed_genes_per_celltype: dict = {}, filter_genes_at_threshold: bool = True):
"""
Get averaged expression data for each cell type and individual in an AnnData object.
Args:
adata (AnnData): An AnnData object with read counts (gene x cell).
subject_id (str): a string indicating the column containing individual identifiers.
method (str): a string indicating the method to be used. The default is "agg_x_num".
filter_genes_at_threshold (bool): A boolean indicating whether to filter genes based on threshold. The default is True.
expressed_genes_per_celltype (float): A dictionary of the genes to be filtered for each celltype.
Returns:
Dictionary: A dictionary of data frames with averaged expression data for each cell type and individual.
"""
if method == "agg_x_norm":
avs_logcounts_cellxind = {}
# loop over each unique cell type in the annotation metadata
for cell_type in adata.obs.cell_type.unique():
# filter genes based on threshold
if filter_genes_at_threshold:
adata_temp = adata[adata.obs.cell_type==cell_type].copy()
# sc.pp.filter_genes(adata_temp, min_cells=gene_celltype_threshold*adata_temp.n_obs)
adata_temp = adata_temp[:, adata_temp.var_names.isin(expressed_genes_per_celltype[cell_type].tolist())]
else:
adata_temp = adata.copy()
# Get pseudo-bulk profile
pdata = dc.get_pseudobulk(adata_temp, sample_col=subject_id, groups_col='cell_type', layer='counts', mode='sum',
min_cells=0, min_counts=0)
# genes = dc.filter_by_prop(pdata, min_prop=0.05, min_smpls=1)
# pdata = pdata[:, genes].copy()
# Normalize and log transform
# sc.pp.normalize_total(pdata, 1e06)
# sc.pp.log1p(pdata)
pdata.layers['counts'] = pdata.X
pdata = normalize_actionet(pdata, layer_key = 'counts', layer_key_out = None,
top_features_frac = 1.0, scale_factor = "median",
transformation = "log", anchor_features = None, copy = True)
# Store the log-normalized, averaged expression data for each individual and cell type
avs_logcounts_cellxind[cell_type] = pd.DataFrame(pdata.X.T, columns=pdata.obs[subject_id], index=pdata.var_names)
del adata_temp, pdata
elif method == 'norm_x_agg':
def sum_counts(counts, label, cell_labels, gene_labels):
"""
Sums cell-level counts by factors in label vector.
Args:
counts (AnnData): An AnnData object with read counts (gene x cell).
label (pd.DataFrame): Variable of interest by which to sum counts.
cell_labels (pd.Index): Vector of cell labels.
gene_labels (pd.Index): Vector of gene labels.
Returns:
Dictionary: A dictionary with the following keys:
- 'summed_counts': A data frame with summed counts.
- 'ncells': A data frame with the number of cells used per summation.
"""
# Create a data frame with the label vector and add a column of 1s for counting.
label_df = pd.DataFrame(label)
label_df.columns = ['ID']
label_df['index'] = 1
# Add a column for cell type and pivot the data frame to create a matrix of counts.
label_df['celltype'] = cell_labels
label_df = label_df.pivot_table(index='celltype', columns='ID', values='index', aggfunc=np.sum, fill_value=0)
label_df = label_df.astype(float)
# Multiply the counts matrix by the gene expression matrix to get summed counts.
summed_counts = pd.DataFrame(counts.X.T @ label_df.values, index = gene_labels, columns= label_df.columns)
# Sum the number of cells used for each summation.
ncells = label_df.sum()
# Return the summed counts and number of cells as a dictionary.
return {'summed_counts': summed_counts, 'ncells': ncells}
# Get metadata from the AnnData object.
meta = adata.obs # Get metadata
# Create a data frame of labels by combining cell type and individual metadata fields.
# Sum counts by individual
labels = pd.DataFrame(meta['cell_type'].astype(str) + '_' + meta[subject_id].astype(str), columns=['individual'])
# Sum counts by individual and store the results in a dictionary.
summed_logcounts_cellxind = sum_counts(adata, labels, adata.obs_names, adata.var_names)
# Calculate averages for each cell type and individual and store the results in a dictionary.
# Get averages corresponding to both count matrices
avs_logcounts = np.array(summed_logcounts_cellxind['summed_counts'].values) / np.array(summed_logcounts_cellxind['ncells'].values)
# avs_logcounts = np.array(summed_logcounts_cellxind['summed_counts'].values)
avs_logcounts = pd.DataFrame(avs_logcounts, index = summed_logcounts_cellxind['summed_counts'].index,
columns=summed_logcounts_cellxind['summed_counts'].columns)
# Split the averages by cell type and individual and store the results in a dictionary.
# Split column names into two parts: cell type and individual
x = [col.split('_') for col in avs_logcounts.columns]
celltype = [col[0] for col in x]
individual = [col[1] for col in x]
# Get unique cell types in the dataset
celltype_unique = np.unique(celltype)
# Create an empty dictionary to store the average counts for each cell type and individual
avs_by_ind_out = {}
# Loop over the unique cell types and subset the average counts for each cell type and individual
for i in celltype_unique:
index = np.array(celltype)==i
df = avs_logcounts.loc[:, index]
df.columns = np.array(individual)[index]
avs_by_ind_out[i] = df
if filter_genes_at_threshold:
# num_cells = round(gene_celltype_threshold*len(adata[adata.obs['cell_type']==cell_type]))
# # Filter genes based on minimum number of cells and store the resulting gene names
# gene_mask, _ = sc.pp.filter_genes(adata[adata.obs.cell_type==cell_type].layers['counts'],
# min_cells=num_cells,
# inplace=False)
# genes = list(adata.var_names[gene_mask])
avs_by_ind_out[i] = avs_by_ind_out[i].loc[expressed_genes_per_celltype[i], :]
else:
adata = adata.copy()
# Store the dictionary of average counts for each cell type and individual
avs_logcounts_cellxind = avs_by_ind_out
# Return the dictionary of average counts for each cell type and individual
return avs_logcounts_cellxind
def plot_and_select_top_deps(all_pathways: pd.DataFrame(),
list_of_paths_to_annotate: list = [],
save_name='cell_type_specific',
save_prefix: str = 'mathys_pfc',
filter: bool=False,
cell_type_specific: bool = True,
test_name: str = ''):
if cell_type_specific:
# Plot certain cell_type specific pathways
collated_df = pd.DataFrame(all_pathways.groupby(all_pathways.index).agg({'score_adj': list, 'celltype': list,
'logFC': list, 'P.Value': list, 'shortened': list, 'highlight': list}))
# filter pathways only expressed in one cell type
mask = collated_df["celltype"].apply(len) == 1
df = collated_df[mask]
# create pathway by cell type pivot table
scores_table = pd.pivot_table(all_pathways, values='score_adj', index='pathway', columns='celltype')
scores_table = scores_table.loc[df.index]
scores_table['shortened'] = df.shortened.apply(lambda x: x[0])
scores_table['highlight'] = df.highlight.apply(lambda x: x[0])
scores_table.sort_values(by=[cell_type for cell_type in all_pathways.celltype.unique()], inplace=True)
# drop pathways with same shortened names ??
scores_table = scores_table.drop_duplicates(subset='shortened', keep='first')
###### Plot Cell type specific data
if filter:
xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial']
# select only pathways that should be visualized
shortened_names = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)]['shortened']
scores_table = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)]
n_rows = len(scores_table)
fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained')
fig.tight_layout()
# order table by cell type name
# scores_table = scores_table.reindex(columns=['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte',
# 'OPC', 'Microglia'])
scores_table = scores_table[xticks]
g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g',
linewidths=0.15, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.2},
cbar_ax=None, square=False,ax=ax1, xticklabels=xticks, yticklabels=shortened_names, mask=None,)
cax = g1.figure.axes[-1]
g1.set_title(f'Select Cell-type-specific Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology',
fontsize=3)
g1.set_ylabel('')
g1.set_xlabel('')
ax1.tick_params(axis='both', which='major', labelsize=4, length=1.5, width=0.5)
cax.tick_params(labelsize=4, length=1.5, width=0.5, which="major")
plt.tight_layout()
plt.savefig(f'results/{test_name}/{save_prefix}_filtered_{save_name}_diff_exp_paths.pdf', bbox_inches='tight')
plt.show(block=False)
else:
xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial']
scores_table = scores_table[scores_table.shortened!='None']
yticklabels = scores_table['shortened']
# order table by cell type name
scores_table = scores_table[xticks]
n_rows = len(scores_table)
fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained')
fig.tight_layout()
g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g',
linewidths=0.07, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.1},
cbar_ax=None, square=False, ax=ax1, xticklabels=xticks, yticklabels=yticklabels, mask=None,)
cax = g1.figure.axes[-1]
g1.set_title(f'All Cell-type-specific Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology',
fontsize=3)
g1.set_ylabel('')
g1.set_xlabel('')
ax1.tick_params(axis='both', which='major', labelsize=2, length=1.5, width=0.25)
cax.tick_params(labelsize=4, length=1.5, width=0.25, which="major")
plt.tight_layout()
#plt.savefig(f'../results/{test_name}/{save_prefix}_all_{save_name}_diff_exp_paths.pdf', bbox_inches='tight')
plt.savefig(f'results/{test_name}/{save_prefix}_all_{save_name}_diff_exp_paths.pdf', bbox_inches='tight')
plt.show(block=False)
else:
# Plot certain cell_type specific pathways
collated_df = pd.DataFrame(all_pathways.groupby(all_pathways.index).agg({'score_adj': list, 'celltype': list,
'logFC': list, 'P.Value': list, 'shortened': list, 'highlight': list}))
# filte pathways only expressed in one cell type
mask = collated_df["celltype"].apply(len) > 1
df = collated_df[mask]
# create pathway by cell type pivot table
scores_table = pd.pivot_table(all_pathways, values='score_adj', index='pathway', columns='celltype')
scores_table = scores_table.loc[df.index]
scores_table['shortened'] = df.shortened.apply(lambda x: x[0])
scores_table['highlight'] = df.highlight.apply(lambda x: x[0])
scores_table.sort_values(by=[cell_type for cell_type in all_pathways.celltype.unique()], inplace=True)
# drop pathways with same shortened names ??
scores_table = scores_table.drop_duplicates(subset='shortened', keep='first')
###### Plot Cell type specific data
if filter:
xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial']
# select only pathways that should be visualized
shortened_names = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)]['shortened']
scores_table = scores_table[scores_table.shortened.isin(list_of_paths_to_annotate)]
# order table by cell type name
scores_table = scores_table[xticks]
n_rows = len(scores_table)
fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained')
fig.tight_layout()
g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g',
linewidths=0.15, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.2},
cbar_ax=None, square=False,ax=ax1, xticklabels=xticks, yticklabels=shortened_names, mask=None,)
cax = g1.figure.axes[-1]
g1.set_title(f'Select Shared Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology', fontsize=3)
g1.set_ylabel('')
g1.set_xlabel('')
ax1.tick_params(axis='both', which='major', labelsize=4, length=1.5, width=0.5)
cax.tick_params(labelsize=4, length=1.5, width=0.5, which="major")
plt.tight_layout()
plt.savefig(f'results/{test_name}/{save_prefix}_filtered_{save_name}_diff_exp_paths.pdf', bbox_inches='tight')
plt.show(block=False)
else:
xticks = ['Excitatory', 'Inhibitory', 'Astrocyte', 'Oligodendrocyte', 'OPC', 'Microglia', 'Endothelial']
scores_table = scores_table[scores_table.shortened!='None']
yticklabels = scores_table['shortened']
# order table by cell type name
scores_table = scores_table[xticks]
n_rows = len(scores_table)
fig, ax1 = plt.subplots(1, 1, figsize=(0.5, n_rows*0.095), sharex=False, layout='constrained')
fig.tight_layout()
g1 = sb.heatmap(scores_table, cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g',
linewidths=0.07, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.1},
cbar_ax=None, square=False, ax=ax1, xticklabels=xticks, yticklabels=yticklabels, mask=None,)
cax = g1.figure.axes[-1]
g1.set_title(f'All Broad Pathways in {test_name.split("_")[0]}- vs {test_name.split("_")[-1]}-pathology', fontsize=3)
g1.set_ylabel('')
g1.set_xlabel('')
ax1.tick_params(axis='both', which='major', labelsize=2, length=1.5, width=0.25)
cax.tick_params(labelsize=4, length=1.5, width=0.25, which="major")
plt.tight_layout()
plt.savefig(f'results/{test_name}/{save_prefix}_all_{save_name}_diff_exp_paths.pdf', bbox_inches='tight')
plt.show(block=False)
return
def multi_study_pathway_overlap(pathway_scores: dict = {},
filtered_pathways: list = [],
cell_types: list = ["Excitatory", "Inhibitory", "Astrocyte",
"Microglia", "Oligodendrocyte", "OPC", "Endothelial"],
test_name: str = 'ad_vs_no',
top_n: int = 10,
pathways: list = [],
filter: bool = False,
save_suffix: str = 'ad_vs_no',
method: str = 'cell_type_overlap'):
"""
This function generates a heatmap of the overlapping pathways across multiple studies. The heatmap displays the adjusted
pathway scores across different cell types for each pathway in each study. The function also returns a dictionary of
filtered scores that contain only the overlapping pathways across the studies.
Parameters:
-----------
pathway_scores : dict
A dictionary of pathway scores for different studies.
filtered_pathways : list, optional
A list of pathways to be used as a filter.
cell_types : list, optional
A list of cell types to be included in the heatmap. Default is ["Excitatory", "Inhibitory", "Astrocyte",
"Microglia", "Oligodendrocyte", "OPC", "Endothelial"].
test_name : str, optional
The name of the test being compared. Default is 'ad_vs_no'.
top_n : int, optional
The number of top pathways to be included in the heatmap. Default is 10.
pathways : list, optional
A list of pathways to be included in the heatmap. If not empty, only these pathways will be included in the
heatmap. Default is [].
filter : bool, optional
If True, the function will filter out pathways that are not present in the filtered_pathways list. Default is
False.
save_suffix : str, optional
A suffix to be added to the output file name. Default is 'ad_vs_no'.
method : str, optional
The method used to generate the overlap. 'cell_type_overlap' will generate the overlap based on cell type.
'global_overlap' will generate the overlap based on all pathways in the studies. Default is 'cell_type_overlap'.
Returns:
--------
filtered_scores : dict
A dictionary of pathway scores for the overlapping pathways across the studies.
Examples:
---------
>>> multi_study_pathway_overlap(pathway_scores, filtered_pathways=['pathway1', 'pathway2'],
cell_types=['Excitatory', 'Astrocyte'], test_name='ad_vs_no', filter=True)
"""
for i, study in enumerate(pathway_scores.keys()):
pathway_scores[study][test_name] = pathway_scores[study][test_name][pathway_scores[study][test_name].celltype.isin(cell_types)]
if method == "cell_type_overlap":
overlap = []
for cell_type in cell_types:
eval_string = []
for i, study in enumerate(pathway_scores.keys()):
eval_string.append(f'set(pathway_scores["{study}"]["{test_name}"][pathway_scores["{study}"]["{test_name}"].celltype=="{cell_type}"].pathway)')
eval_string = '&'.join(eval_string)
overlap.extend(list(eval(eval_string)))
elif method == "global_overlap":
overlap = []
eval_string = []
for i, study in enumerate(pathway_scores.keys()):
eval_string.append(f'set(pathway_scores["{study}"]["{test_name}"].pathway)')
eval_string = '&'.join(eval_string)
overlap.extend(list(eval(eval_string)))
if filter:
n_rows = len(set(filtered_pathways) & set(overlap))
else:
n_rows = len(overlap)
fig, axs = plt.subplots(1, 3, figsize=(3.5, n_rows*0.095), gridspec_kw={'width_ratios':[0.85, 0.85, 1]}, sharex=False,
sharey=True, layout='constrained')
fig.tight_layout()
filtered_scores = {}
shortened_names = {}
for i, study in enumerate(pathway_scores.keys()):
filtered_scores[study] = pathway_scores[study][test_name][pathway_scores[study][test_name].pathway.isin(overlap)]
filtered_scores[study] = pd.pivot_table(filtered_scores[study], values='score_adj', index='pathway', columns='celltype')
filtered_scores[study] = filtered_scores[study][cell_types]
if filter:
filtered_scores[study] = filtered_scores[study].loc[filtered_scores[study].index.isin(filtered_pathways)]
shortened_names[study] = [' '.join(name.split(" ")[:-1]) for name in filtered_scores[study].index]
# shortened_names[study] = filtered_scores[study].index
cbar=True if study==list(pathway_scores.keys())[-1] else False
g1 = sb.heatmap(filtered_scores[study], cmap='bwr', center=0, vmin=-2.5, vmax=2.5, robust=False, annot=None, fmt='.1g',
linewidths=0.015, linecolor='black', annot_kws=None, cbar_kws={'shrink': 0.2}, cbar=cbar,
cbar_ax=None, square=False, ax=axs[i], xticklabels=cell_types, yticklabels=shortened_names[study], mask=None,)
axs[i].tick_params(axis='both', which='major', labelsize=2.5, length=1.5, width=0.5)
g1.set_title(study.split('_')[-1].upper(), fontsize=3)
g1.set_ylabel('', fontsize=4)
g1.set_xlabel('')
cax = g1.figure.axes[-1]
cax.tick_params(labelsize=4, length=1.5, width=0.5, which="major")
# plt.tight_layout()
# if filter:
# plt.savefig(f'../results/pathway_meta_analysis/filtered_overlap_pathway_diff_exp_patterns_{save_suffix}.pdf', bbox_inches='tight')
# else:
plt.suptitle(f"{test_name.split('_')[0].capitalize()}- vs {test_name.split('_')[-1]}-pathology", fontsize=4)
if filter:
plt.savefig(f'results/{test_name}/multi_study_pathway_overlap_filtered.pdf', bbox_inches='tight')
else:
plt.savefig(f'results/{test_name}/multi_study_pathway_overlap_all.pdf', bbox_inches='tight')
plt.show(block=False)
return filtered_scores
def save_plot(fig, ax, save):
if save is not None:
if ax is not None:
if fig is not None:
fig.savefig(save, bbox_inches='tight')
else:
raise ValueError("fig is None, cannot save figure.")
else:
raise ValueError("ax is None, cannot save figure.")
def check_if_matplotlib(return_mpl=False):
if not return_mpl:
try:
import matplotlib.pyplot as plt
except Exception:
raise ImportError('matplotlib is not installed. Please install it with: pip install matplotlib')
return plt
else:
try:
import matplotlib as mpl
except Exception:
raise ImportError('matplotlib is not installed. Please install it with: pip install matplotlib')
return mpl
def check_if_seaborn():
try:
import seaborn as sns
except Exception:
raise ImportError('seaborn is not installed. Please install it with: pip install seaborn')
return sns
def check_if_adjustText():
try:
import adjustText as at
except Exception:
raise ImportError('adjustText is not installed. Please install it with: pip install adjustText')
return at
def filter_limits(df, sign_limit=None, lFCs_limit=None):
"""
Filters a DataFrame by limits of the absolute value of the columns pvals and logFCs.
Parameters
----------
df : pd.DataFrame
The input DataFrame to be filtered.
sign_limit : float, None
The absolute value limit for the p-values. If None, defaults to infinity.
lFCs_limit : float, None
The absolute value limit for the logFCs. If None, defaults to infinity.
Returns
-------
pd.DataFrame
The filtered DataFrame.
"""
# Define limits if not defined
if sign_limit is None:
sign_limit = np.inf
if lFCs_limit is None:
lFCs_limit = np.inf
# Filter by absolute value limits
msk_sign = df['pvals'] < np.abs(sign_limit)
msk_lFCs = np.abs(df['logFCs']) < np.abs(lFCs_limit)
df = df.loc[msk_sign & msk_lFCs]
return df
def plot_volcano(data, x, y, x_label, y_label='-log10(pvals)', annotate=True,
annot_by='top', names=[],
top=5, sign_thr=0.05, lFCs_thr=0.5, sign_limit=None, lFCs_limit=None,
figsize=(7, 5), dpi=100, ax=None, return_fig=False, save=None,
fontsizes={"on_plot": 4}):
"""
Plot logFC and p-values from a long formated data-frame.
Parameters
----------
data : pd.DataFrame
Results of DEA in long format.
x : str
Column name of data storing the logFCs.
y : str
Columns name of data storing the p-values.
x_label: str
Aternate name for LogFC to be included in plot. If None, defaults to x
y_label: str
Aternate name for p-values to be included in plot. If None, defaults to y
annotate: bool
Whether to annotate labels.
annot_by: str
Determines how to annotate the plot for top features. It can be either 'top' or 'name'.
If set to 'top', the top top differentially expressed features will be annotated. If set to 'name',
only the features specified in names will be annotated.
names: list[]:
A list of feature names to be annotated in the plot. Only used if annot_by is set to 'name'.
top : int
Number of top differentially expressed features to show.
sign_thr : float
Significance threshold for p-values.
lFCs_thr : float
Significance threshold for logFCs.
sign_limit : float
Limit of p-values to plot in -log10.
lFCs_limit : float
Limit of logFCs to plot in absolute value.
figsize : tuple
Figure size.
dpi : int
DPI resolution of figure.
ax : Axes, None
A matplotlib axes object. If None returns new figure.
return_fig : bool
Whether to return a Figure object or not.
save : str, None
Path to where to save the plot. Infer the filetype if ending on {`.pdf`, `.png`, `.svg`}.
Returns
-------
fig : Figure, None
If return_fig, returns Figure object.
"""
if x_label is None:
x_label = x
if y_label is None:
y_label = y
# Load plotting packages
plt = check_if_matplotlib()
at = check_if_adjustText()
# Transform sign_thr
sign_thr = -np.log10(sign_thr)
# Extract df
df = data.copy()
df['logFCs'] = df[x]
df['pvals'] = -np.log10(df[y])
# Filter by limits
df = filter_limits(df, sign_limit=sign_limit, lFCs_limit=lFCs_limit)
# Define color by up or down regulation and significance
df['weight'] = 'gray'
up_msk = (df['logFCs'] >= lFCs_thr) & (df['pvals'] >= sign_thr)
dw_msk = (df['logFCs'] <= -lFCs_thr) & (df['pvals'] >= sign_thr)
df.loc[up_msk, 'weight'] = '#D62728'
df.loc[dw_msk, 'weight'] = '#1F77B4'
# Plot
fig = None
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)
n = df.shape[0]
size = 120000 / (100*n)
df.plot.scatter(x='logFCs', y='pvals', c='weight', sharex=False, ax=ax, s=size)
# Draw sign lines
ax.axhline(y=sign_thr, linestyle='--', color="black")
ax.axvline(x=lFCs_thr, linestyle='--', color="black")
ax.axvline(x=-lFCs_thr, linestyle='--', color="black")
# Plot top sign features
signs = df[up_msk | dw_msk].sort_values('pvals', ascending=False)
# Add labels
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
if annotate:
if annot_by == 'top':
signs = signs.iloc[:top]
elif annot_by == 'name':
signs = signs.loc[signs.index.isin(names)]
texts = []
for x, y, s in zip(signs['logFCs'], signs['pvals'], signs.index):
texts.append(ax.text(x, y, s, fontsize=fontsizes['on_plot']))
if len(texts) > 0:
at.adjust_text(texts, arrowprops=dict(arrowstyle='-', color='black'), ax=ax)
save_plot(fig, ax, save)
if return_fig:
return fig
|