|
from huggingface_hub import hf_hub_download
|
|
import joblib
|
|
import gradio as gr
|
|
import numpy as np
|
|
|
|
|
|
model_path = hf_hub_download(repo_id="suryadev1/knn", filename="knn_model.pkl")
|
|
|
|
|
|
knn = joblib.load(model_path)
|
|
|
|
|
|
def predict(input_data):
|
|
|
|
input_data = np.array(input_data).reshape(1, -1)
|
|
|
|
predictions = knn.predict([[0.2,0.03,0.0,1.0,0.0]])
|
|
return predictions[0]
|
|
|
|
|
|
|
|
input_components = [gr.inputs.Number(label=f"Feature {i+1}") for i in range(4)]
|
|
output_component = gr.outputs.Textbox(label="Prediction")
|
|
|
|
iface = gr.Interface(
|
|
fn=predict,
|
|
inputs=input_components,
|
|
outputs=output_component,
|
|
title="KNN Model Prediction",
|
|
description="Enter values for each feature to get a prediction."
|
|
)
|
|
|
|
|
|
iface.launch()
|
|
|