File size: 1,048 Bytes
2afb4ce
146fd50
2afb4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from huggingface_hub import hf_hub_download
import joblib
import gradio as gr
import numpy as np

# Download the model from Hugging Face Hub
model_path = hf_hub_download(repo_id="suryadev1/knn", filename="knn_model.pkl")

# Load the model
knn = joblib.load(model_path)

# Define the prediction function
def predict(input_data):
    # Convert input_data to numpy array
    input_data = np.array(input_data).reshape(1, -1)
    # Make predictions
    predictions = knn.predict([[0.2,0.03,0.0,1.0,0.0]])
    return predictions[0]

# Create Gradio interface
# Adjust the input components based on the number of features your model expects
input_components = [gr.inputs.Number(label=f"Feature {i+1}") for i in range(4)]
output_component = gr.outputs.Textbox(label="Prediction")

iface = gr.Interface(
    fn=predict,
    inputs=input_components,
    outputs=output_component,
    title="KNN Model Prediction",
    description="Enter values for each feature to get a prediction."
)

# Launch the interface
iface.launch()