Upload app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,34 @@
|
|
|
|
1 |
import joblib
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
import joblib
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Download the model from Hugging Face Hub
|
7 |
+
model_path = hf_hub_download(repo_id="suryadev1/knn", filename="knn_model.pkl")
|
8 |
+
|
9 |
+
# Load the model
|
10 |
+
knn = joblib.load(model_path)
|
11 |
+
|
12 |
+
# Define the prediction function
|
13 |
+
def predict(input_data):
|
14 |
+
# Convert input_data to numpy array
|
15 |
+
input_data = np.array(input_data).reshape(1, -1)
|
16 |
+
# Make predictions
|
17 |
+
predictions = knn.predict([[0.2,0.03,0.0,1.0,0.0]])
|
18 |
+
return predictions[0]
|
19 |
+
|
20 |
+
# Create Gradio interface
|
21 |
+
# Adjust the input components based on the number of features your model expects
|
22 |
+
input_components = [gr.inputs.Number(label=f"Feature {i+1}") for i in range(4)]
|
23 |
+
output_component = gr.outputs.Textbox(label="Prediction")
|
24 |
+
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=predict,
|
27 |
+
inputs=input_components,
|
28 |
+
outputs=output_component,
|
29 |
+
title="KNN Model Prediction",
|
30 |
+
description="Enter values for each feature to get a prediction."
|
31 |
+
)
|
32 |
+
|
33 |
+
# Launch the interface
|
34 |
+
iface.launch()
|