suryadev1 commited on
Commit
2afb4ce
·
verified ·
1 Parent(s): 146fd50

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -4
app.py CHANGED
@@ -1,5 +1,34 @@
 
1
  import joblib
2
- knn = joblib.load('knn_model.pkl')
3
- import warnings
4
- warnings.filterwarnings('ignore')
5
- print(knn.predict([[0.2,0.03,0.0,1.0,0.0]]))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import hf_hub_download
2
  import joblib
3
+ import gradio as gr
4
+ import numpy as np
5
+
6
+ # Download the model from Hugging Face Hub
7
+ model_path = hf_hub_download(repo_id="suryadev1/knn", filename="knn_model.pkl")
8
+
9
+ # Load the model
10
+ knn = joblib.load(model_path)
11
+
12
+ # Define the prediction function
13
+ def predict(input_data):
14
+ # Convert input_data to numpy array
15
+ input_data = np.array(input_data).reshape(1, -1)
16
+ # Make predictions
17
+ predictions = knn.predict([[0.2,0.03,0.0,1.0,0.0]])
18
+ return predictions[0]
19
+
20
+ # Create Gradio interface
21
+ # Adjust the input components based on the number of features your model expects
22
+ input_components = [gr.inputs.Number(label=f"Feature {i+1}") for i in range(4)]
23
+ output_component = gr.outputs.Textbox(label="Prediction")
24
+
25
+ iface = gr.Interface(
26
+ fn=predict,
27
+ inputs=input_components,
28
+ outputs=output_component,
29
+ title="KNN Model Prediction",
30
+ description="Enter values for each feature to get a prediction."
31
+ )
32
+
33
+ # Launch the interface
34
+ iface.launch()