Spaces:
Sleeping
Sleeping
File size: 61,778 Bytes
34e5315 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 34e5315 28808c0 34e5315 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 34e5315 28808c0 b1a0ec6 34e5315 28808c0 d68daa5 28808c0 34e5315 28808c0 b1a0ec6 28808c0 14659c1 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 14659c1 28808c0 b1a0ec6 28808c0 14659c1 28808c0 14659c1 b1a0ec6 14659c1 b1a0ec6 14659c1 b1a0ec6 14659c1 28808c0 b1a0ec6 14659c1 28808c0 14659c1 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 14659c1 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 14659c1 b1a0ec6 03da98c b1a0ec6 28808c0 ab836e9 b1a0ec6 ab836e9 2dc84ee 23000fe 14659c1 28808c0 c150284 83b0f7f c9f89c9 c150284 a3dabad c150284 a3dabad c150284 a3dabad 83b0f7f c150284 a3dabad 14659c1 b1a0ec6 23000fe b1a0ec6 23000fe 0dc1245 23000fe b1a0ec6 23000fe b1a0ec6 23000fe 14659c1 b1a0ec6 14659c1 28808c0 b1a0ec6 23000fe 28808c0 23000fe 14659c1 23000fe b1a0ec6 c150284 b1a0ec6 23000fe 14659c1 28808c0 23000fe 14659c1 28808c0 b1a0ec6 ab836e9 28808c0 b1a0ec6 28808c0 14659c1 28808c0 14659c1 b1a0ec6 23000fe 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 23000fe b1a0ec6 23000fe b1a0ec6 14659c1 28808c0 84c93e1 28808c0 84c93e1 fc67415 84c93e1 fc67415 d68daa5 fc67415 d68daa5 fc67415 d68daa5 fc67415 d68daa5 84c93e1 fc67415 28808c0 fc67415 84c93e1 28808c0 b1a0ec6 14659c1 b1a0ec6 14659c1 28808c0 23000fe b1a0ec6 23000fe 14659c1 b1a0ec6 28808c0 b1a0ec6 23000fe 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 14659c1 b1a0ec6 28808c0 b1a0ec6 28808c0 14659c1 28808c0 b1a0ec6 14659c1 28808c0 b1a0ec6 28808c0 b1a0ec6 0f5217f 28808c0 0f5217f 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 14659c1 b1a0ec6 14659c1 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 14659c1 b1a0ec6 14659c1 b1a0ec6 28808c0 b1a0ec6 28808c0 14659c1 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 14659c1 b1a0ec6 14659c1 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 14659c1 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 53082ed 67b8dd4 f21caca 2abe62d f21caca 2abe62d f21caca 2abe62d f21caca 2abe62d f21caca 2abe62d f21caca 53082ed 2abe62d 53082ed 28808c0 b1a0ec6 14659c1 b1a0ec6 14659c1 28808c0 b1a0ec6 14659c1 28808c0 b1a0ec6 14659c1 b1a0ec6 14659c1 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 14659c1 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 14659c1 28808c0 b1a0ec6 28808c0 14659c1 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 da277cd b1a0ec6 28808c0 da277cd b1a0ec6 da277cd b1a0ec6 ae6c5d5 b1a0ec6 ae6c5d5 28808c0 1132e0a b1a0ec6 28808c0 b1a0ec6 436fe29 b1a0ec6 28808c0 b1a0ec6 1132e0a b1a0ec6 1132e0a b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 b1a0ec6 28808c0 029feef 1132e0a 436fe29 1132e0a 436fe29 1132e0a 436fe29 1132e0a 029feef 1132e0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 |
import os
import sys
import json
import logging
import warnings
from pathlib import Path
from typing import List, Dict, Any, Optional, Tuple
import hashlib
import pickle
from datetime import datetime
import time
import asyncio
from concurrent.futures import ThreadPoolExecutor
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
# Core dependencies
import gradio as gr
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import faiss
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig,
pipeline
)
# Document processing
from llama_index.core import Document, VectorStoreIndex, Settings
from llama_index.core.node_parser import SentenceSplitter
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import StorageContext
# PDF processing
from unstructured.partition.pdf import partition_pdf
from llama_index.core.schema import Document as LlamaDocument
# Medical knowledge validation
import re
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class MedicalFactChecker:
"""Enhanced medical fact checker with faster validation"""
def __init__(self):
self.medical_facts = self._load_medical_facts()
self.contraindications = self._load_contraindications()
self.dosage_patterns = self._compile_dosage_patterns()
self.definitive_patterns = [
re.compile(r, re.IGNORECASE) for r in [
r'always\s+(?:use|take|apply)',
r'never\s+(?:use|take|apply)',
r'will\s+(?:cure|heal|fix)',
r'guaranteed\s+to',
r'completely\s+(?:safe|effective)'
]
]
def _load_medical_facts(self) -> Dict[str, Any]:
"""Pre-loaded medical facts for Gaza context"""
return {
"burn_treatment": {
"cool_water": "Use clean, cool (not ice-cold) water for 10-20 minutes",
"no_ice": "Never apply ice directly to burns",
"clean_cloth": "Cover with clean, dry cloth if available"
},
"wound_care": {
"pressure": "Apply direct pressure to control bleeding",
"elevation": "Elevate injured limb if possible",
"clean_hands": "Clean hands before treating wounds when possible"
},
"infection_signs": {
"redness": "Increasing redness around wound",
"warmth": "Increased warmth at wound site",
"pus": "Yellow or green discharge",
"fever": "Fever may indicate systemic infection"
}
}
def _load_contraindications(self) -> Dict[str, List[str]]:
"""Pre-loaded contraindications for common treatments"""
return {
"aspirin": ["children under 16", "bleeding disorders", "stomach ulcers"],
"ibuprofen": ["kidney disease", "heart failure", "stomach bleeding"],
"hydrogen_peroxide": ["deep wounds", "closed wounds", "eyes"],
"tourniquets": ["non-life-threatening bleeding", "without proper training"]
}
def _compile_dosage_patterns(self) -> List[re.Pattern]:
"""Pre-compiled dosage patterns"""
patterns = [
r'\d+\s*mg\b', # milligrams
r'\d+\s*g\b', # grams
r'\d+\s*ml\b', # milliliters
r'\d+\s*tablets?\b', # tablets
r'\d+\s*times?\s+(?:per\s+)?day\b', # frequency
r'every\s+\d+\s+hours?\b' # intervals
]
return [re.compile(pattern, re.IGNORECASE) for pattern in patterns]
def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]:
"""Enhanced medical accuracy check with Gaza-specific considerations"""
issues = []
warnings = []
accuracy_score = 0.0
# Check for contraindications (faster keyword matching)
response_lower = response.lower()
for medication, contra_list in self.contraindications.items():
if medication in response_lower:
for contra in contra_list:
if any(word in response_lower for word in contra.split()):
issues.append(f"Potential contraindication: {medication} with {contra}")
accuracy_score -= 0.3
break
# Context alignment using Jaccard similarity
if context:
resp_words = set(response_lower.split())
ctx_words = set(context.lower().split())
context_similarity = len(resp_words & ctx_words) / len(resp_words | ctx_words) if ctx_words else 0.0
if context_similarity < 0.5: # Lowered threshold for Gaza context
warnings.append(f"Low context similarity: {context_similarity:.2f}")
accuracy_score -= 0.1
else:
context_similarity = 0.0
# Gaza-specific resource checks
gaza_resources = ["clean water", "sterile", "hospital", "ambulance", "electricity"]
if any(resource in response_lower for resource in gaza_resources):
warnings.append("Consider resource limitations in Gaza context")
accuracy_score -= 0.05
# Unsupported claims check
for pattern in self.definitive_patterns:
if pattern.search(response):
issues.append(f"Unsupported definitive claim detected")
accuracy_score -= 0.4
break
# Dosage validation
for pattern in self.dosage_patterns:
if pattern.search(response):
warnings.append("Dosage detected - verify with professional")
accuracy_score -= 0.1
break
confidence_score = max(0.0, min(1.0, 0.8 + accuracy_score))
return {
"confidence_score": confidence_score,
"issues": issues,
"warnings": warnings,
"context_similarity": context_similarity,
"is_safe": len(issues) == 0 and confidence_score > 0.5
}
class EnhancedGazaKnowledgeBase:
"""Enhanced knowledge base with better embeddings and indexing"""
def __init__(self, data_dir: str = "./data"):
self.data_dir = Path(data_dir)
self.embedding_model = None
self.vector_store = None
self.index = None
self.chunk_metadata = []
self.index_path = self.data_dir / "enhanced_vector_store"
# Enhanced medical priorities for Gaza context
self.medical_priorities = {
"trauma": ["gunshot", "blast", "burns?", "fracture", "shrapnel", "explosion"],
"infectious": ["cholera", "dysentery", "infection", "sepsis", "wound infection"],
"chronic": ["diabetes", "hypertension", "malnutrition", "kidney", "heart"],
"emergency": ["cardiac", "bleeding", "airway", "unconscious", "shock"],
"gaza_specific": ["siege", "blockade", "limited supplies", "no electricity", "water shortage"]
}
def initialize(self):
"""Enhanced initialization with better embedding model"""
if not self.index_path.exists():
self.index_path.mkdir(parents=True)
# Use a more powerful medical embedding model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Try to use a medical-specific embedding model, fallback to general model
try:
# First try a medical-specific model (if available)
self.embedding_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-mpnet-base-v2", # Higher dimension (768)
device=device,
embed_batch_size=4
)
logger.info("Using all-mpnet-base-v2 (768-dim) embedding model")
except Exception as e:
logger.warning(f"Failed to load preferred model, using fallback: {e}")
self.embedding_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-MiniLM-L6-v2",
device=device,
embed_batch_size=4
)
logger.info("Using all-MiniLM-L6-v2 (384-dim) embedding model")
# Configure global settings
Settings.embed_model = self.embedding_model
Settings.chunk_size = 512 # Increased chunk size for better context
Settings.chunk_overlap = 50 # Increased overlap
# Check for existing index
if (self.index_path / "index.faiss").exists() and (self.index_path / "docstore.json").exists():
self._load_vector_store()
else:
self._create_vector_store()
def _batch_embed_with_retry(self, texts, batch_size=16, max_retries=3, delay=2):
"""
Embed texts in batches with retry fallback and logging
"""
embeddings = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_size]
for attempt in range(max_retries):
try:
batch_embeddings = self.embedding_model.get_text_embedding_batch(batch)
embeddings.extend(batch_embeddings)
break # success
except Exception as e:
if attempt < max_retries - 1:
logger.warning(f"Batch {i}-{i+len(batch)} failed (attempt {attempt+1}): {e}. Retrying...")
time.sleep(delay * (attempt + 1))
else:
logger.error(f"β Final failure embedding batch {i}-{i+len(batch)}: {e}")
for text in batch:
try:
embeddings.append(self.embedding_model.get_text_embedding(text))
except Exception as sub_e:
logger.error(f"Failed to embed single text: {sub_e} β {text[:60]}...")
return embeddings
def _load_vector_store(self):
"""Load existing vector store with error handling"""
try:
# Load the FAISS index directly
faiss_index = faiss.read_index(str(self.index_path / "index.faiss"))
vector_store = FaissVectorStore(faiss_index=faiss_index)
# Create storage context
storage_context = StorageContext.from_defaults(
vector_store=vector_store,
persist_dir=str(self.index_path)
)
# Load the index
self.index = VectorStoreIndex.load(
storage_context=storage_context
)
# Load metadata
metadata_path = self.index_path / "metadata.pkl"
if metadata_path.exists():
with open(metadata_path, 'rb') as f:
self.chunk_metadata = pickle.load(f)
logger.info(f"Loaded existing vector store with {len(self.chunk_metadata)} chunks")
except Exception as e:
logger.error(f"Error loading vector store: {e}")
# Fallback to creating new store if loading fails
self._create_vector_store()
def _create_vector_store(self):
"""Create enhanced vector store with IVF indexing"""
documents = self._load_documents()
if not documents:
logger.warning("No documents found. Creating empty index")
self.chunk_metadata = []
return
# Determine embedding dimension
try:
test_embedding = self.embedding_model.get_text_embedding("test")
dimension = len(test_embedding)
logger.info(f"Embedding dimension: {dimension}")
except Exception as e:
logger.error(f"Failed to determine embedding dimension: {e}")
dimension = 768 # Default for all-mpnet-base-v2
# Create enhanced FAISS index with IVF for better performance
try:
# For small datasets, use flat index; for larger ones, use IVF
if len(documents) < 1000:
faiss_index = faiss.IndexFlatL2(dimension)
logger.info("Using IndexFlatL2 for small dataset")
else:
# Use IVF with reasonable number of clusters
nlist = min(100, len(documents) // 10) # Adaptive cluster count
quantizer = faiss.IndexFlatL2(dimension)
faiss_index = faiss.IndexIVFFlat(quantizer, dimension, nlist)
logger.info(f"Using IndexIVFFlat with {nlist} clusters")
except Exception as e:
logger.error(f"Failed to create enhanced index, using flat: {e}")
faiss_index = faiss.IndexFlatL2(dimension)
vector_store = FaissVectorStore(faiss_index=faiss_index)
# Create storage context
storage_context = StorageContext.from_defaults(
vector_store=vector_store
)
# Configure node parser with enhanced settings
parser = SentenceSplitter(
chunk_size=Settings.chunk_size,
chunk_overlap=Settings.chunk_overlap,
include_prev_next_rel=True # Include relationships for better context
)
# Create index using global settings
self.index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
transformations=[parser],
show_progress=True
)
# Train IVF index if needed
if hasattr(faiss_index, 'train') and not faiss_index.is_trained:
logger.info("Training IVF index...")
# Get some embeddings for training
sample_texts = [doc.text[:500] for doc in documents[:100]] # Sample for training
sample_embeddings = np.array(self._batch_embed_with_retry(sample_texts, batch_size=16)).astype('float32')
faiss_index.train(sample_embeddings)
logger.info("IVF index training completed")
# Save metadata
self.chunk_metadata = [
{"text": node.text, "source": node.metadata.get("source", "unknown")}
for node in self.index.docstore.docs.values()
]
# Persist the index
self.index.storage_context.persist(persist_dir=str(self.index_path))
# Save metadata separately
with open(self.index_path / "metadata.pkl", 'wb') as f:
pickle.dump(self.chunk_metadata, f)
logger.info(f"Created enhanced vector store with {len(self.chunk_metadata)} chunks")
def _load_documents(self) -> List[Document]:
"""Enhanced document loading with better caching"""
documents = []
doc_cache = self.index_path / "document_cache.pkl"
# Try loading from cache
if doc_cache.exists():
try:
with open(doc_cache, 'rb') as f:
cached_data = pickle.load(f)
if isinstance(cached_data, dict) and 'documents' in cached_data:
cached_docs = cached_data['documents']
if isinstance(cached_docs, list) and all(isinstance(d, Document) for d in cached_docs):
logger.info(f"Loaded {len(cached_docs)} documents from cache")
return cached_docs
logger.warning("Document cache format invalid")
except Exception as e:
logger.warning(f"Document cache corrupted: {e}")
# Process files with enhanced error handling
processed_files = []
for pdf_file in self.data_dir.glob("*.pdf"):
try:
doc_text = self._extract_pdf_text(pdf_file)
if doc_text and len(doc_text.strip()) > 100: # Minimum content check
documents.append(Document(
text=doc_text,
metadata={
"source": str(pdf_file.name),
"type": "pdf",
"file_size": pdf_file.stat().st_size,
"processed_date": datetime.now().isoformat()
}
))
processed_files.append(str(pdf_file.name))
logger.info(f"Processed: {pdf_file.name} ({len(doc_text)} chars)")
except Exception as e:
logger.error(f"Error loading {pdf_file}: {e}")
# Process text files as well
for txt_file in self.data_dir.glob("*.txt"):
try:
with open(txt_file, 'r', encoding='utf-8') as f:
doc_text = f.read()
if doc_text and len(doc_text.strip()) > 100:
documents.append(Document(
text=doc_text,
metadata={
"source": str(txt_file.name),
"type": "txt",
"file_size": txt_file.stat().st_size,
"processed_date": datetime.now().isoformat()
}
))
processed_files.append(str(txt_file.name))
logger.info(f"Processed: {txt_file.name} ({len(doc_text)} chars)")
except Exception as e:
logger.error(f"Error loading {txt_file}: {e}")
# Save to cache if we found documents
if documents:
cache_data = {
'documents': documents,
'processed_files': processed_files,
'cache_date': datetime.now().isoformat()
}
with open(doc_cache, 'wb') as f:
pickle.dump(cache_data, f)
logger.info(f"Cached {len(documents)} documents")
return documents
def _extract_pdf_text(self, pdf_path: Path) -> str:
"""Use unstructured to extract and chunk PDF text by title, and save as .txt"""
try:
elements = partition_pdf(filename=str(pdf_path), strategy="auto")
if not elements:
logger.warning(f"No elements extracted from {pdf_path}")
return ""
# Group by title (section-aware)
grouped = {}
current_title = "Untitled Section"
for el in elements:
if el.category == "Title" and el.text.strip():
current_title = el.text.strip()
elif el.text.strip():
grouped.setdefault(current_title, []).append(el.text.strip())
# Recombine into logical chunks
sections = []
for title, paras in grouped.items():
section_text = f"{title}\n" + "\n".join(paras)
sections.append(section_text.strip())
full_text = "\n\n".join(sections)
if len(full_text.strip()) < 100:
logger.warning(f"Extracted text too short from {pdf_path}")
return ""
# Save extracted output to .txt next to original PDF
txt_output = pdf_path.with_suffix(".extracted.txt")
with open(txt_output, "w", encoding="utf-8") as f:
f.write(full_text)
logger.info(f"Saved extracted text to {txt_output.name}")
return full_text
except Exception as e:
logger.error(f"Unstructured PDF parse failed for {pdf_path}: {e}")
return ""
def search(self, query: str, k: int = 5) -> List[Dict[str, Any]]:
"""Enhanced search with better error handling and result processing"""
if not self.index:
logger.warning("Index not available for search")
return []
try:
retriever = self.index.as_retriever(similarity_top_k=k)
results = retriever.retrieve(query)
# FIX: Handle the tuple object error by properly extracting node and score
processed_results = []
for result in results:
try:
# Handle both tuple and direct node results
if isinstance(result, tuple):
node, score = result
else:
node = result
score = getattr(result, 'score', 0.0)
# Extract text safely
text = getattr(node, 'text', str(node))
source = node.metadata.get("source", "unknown") if hasattr(node, 'metadata') else "unknown"
processed_results.append({
"text": text,
"source": source,
"score": float(score) if score is not None else 0.0,
"medical_priority": self._assess_priority(text)
})
except Exception as e:
logger.error(f"Error processing search result: {e}")
continue
# Sort by score (higher is better)
processed_results.sort(key=lambda x: x['score'], reverse=True)
logger.info(f"Search returned {len(processed_results)} results for query: {query[:50]}...")
return processed_results
except Exception as e:
logger.error(f"Error during search: {e}")
return []
def _assess_priority(self, text: str) -> str:
"""Enhanced medical priority assessment"""
text_lower = text.lower()
# Check priorities in order of importance
priority_order = ["emergency", "trauma", "gaza_specific", "infectious", "chronic"]
for priority in priority_order:
keywords = self.medical_priorities.get(priority, [])
if any(re.search(keyword, text_lower) for keyword in keywords):
return priority
return "general"
class EnhancedGazaRAGSystem:
"""Enhanced RAG system with better performance and error handling"""
def __init__(self):
self.knowledge_base = EnhancedGazaKnowledgeBase()
self.fact_checker = MedicalFactChecker()
self.llm = None
self.tokenizer = None
self.system_prompt = self._create_system_prompt()
self.generation_pipeline = None
self.response_cache = {} # Simple response caching
self.executor = ThreadPoolExecutor(max_workers=2) # For async processing
def initialize(self):
"""Enhanced initialization with better error handling"""
logger.info("Initializing Enhanced Gaza RAG System...")
try:
self.knowledge_base.initialize()
logger.info("Knowledge base initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize knowledge base: {e}")
raise
# Lazy LLM loading - will load on first request
logger.info("RAG system ready (LLM will load on first request)")
def _initialize_llm(self):
"""Enhanced LLM initialization with better error handling"""
if self.llm is not None:
return
model_name = "microsoft/Phi-3-mini-4k-instruct"
try:
logger.info(f"Loading LLM: {model_name}")
# Enhanced quantization configuration
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
padding_side="left" # Better for generation
)
# Add pad token if missing
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.llm = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
# Create enhanced pipeline
self.generation_pipeline = pipeline(
"text-generation",
model=self.llm,
tokenizer=self.tokenizer,
device_map="auto",
torch_dtype=torch.float16,
return_full_text=False # Only return generated text
)
logger.info("LLM loaded successfully")
except Exception as e:
logger.error(f"Error loading primary model: {e}")
self._initialize_fallback_llm()
def _initialize_fallback_llm(self):
"""Enhanced fallback model with better error handling"""
try:
logger.info("Loading fallback model...")
fallback_model = "microsoft/DialoGPT-small"
self.tokenizer = AutoTokenizer.from_pretrained(fallback_model)
self.llm = AutoModelForCausalLM.from_pretrained(
fallback_model,
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.generation_pipeline = pipeline(
"text-generation",
model=self.llm,
tokenizer=self.tokenizer,
return_full_text=False
)
logger.info("Fallback model loaded successfully")
except Exception as e:
logger.error(f"Fallback model failed: {e}")
self.llm = None
self.generation_pipeline = None
def _create_system_prompt(self) -> str:
"""Enhanced system prompt for Gaza context"""
return """You are a medical AI assistant specifically designed for Gaza healthcare workers operating under siege conditions.
CRITICAL GUIDELINES:
- Provide practical first aid guidance considering limited resources (water, electricity, medical supplies)
- Always prioritize patient safety and recommend professional medical help when available
- Consider Gaza's specific challenges: blockade, limited hospitals, frequent power outages
- Suggest alternative treatments when standard medical supplies are unavailable
- Never provide definitive diagnoses - only supportive care guidance
- Be culturally sensitive and aware of the humanitarian crisis context
RESOURCE CONSTRAINTS TO CONSIDER:
- Limited clean water availability
- Frequent electricity outages
- Restricted medical supply access
- Overwhelmed healthcare facilities
- Limited transportation for medical emergencies
Provide clear, actionable advice while emphasizing the need for professional medical care when possible."""
async def generate_response_async(self, query: str, progress_callback=None) -> Dict[str, Any]:
"""Async response generation with progress tracking"""
start_time = time.time()
if progress_callback:
progress_callback(0.1, "Checking cache...")
# Check cache first
query_hash = hashlib.md5(query.encode()).hexdigest()
if query_hash in self.response_cache:
cached_response = self.response_cache[query_hash]
cached_response["cached"] = True
cached_response["response_time"] = 0.1
if progress_callback:
progress_callback(1.0, "Retrieved from cache!")
return cached_response
try:
if progress_callback:
progress_callback(0.2, "Initializing LLM...")
# Initialize LLM only when needed
if self.llm is None:
await asyncio.get_event_loop().run_in_executor(
self.executor, self._initialize_llm
)
if progress_callback:
progress_callback(0.4, "Searching knowledge base...")
# Enhanced knowledge retrieval
search_results = await asyncio.get_event_loop().run_in_executor(
self.executor, self.knowledge_base.search, query, 3
)
if progress_callback:
progress_callback(0.6, "Preparing context...")
context = self._prepare_context(search_results)
if progress_callback:
progress_callback(0.8, "Generating response...")
# Generate response
response = await asyncio.get_event_loop().run_in_executor(
self.executor, self._generate_response, query, context
)
if progress_callback:
progress_callback(0.9, "Validating safety...")
# Enhanced safety check
safety_check = self.fact_checker.check_medical_accuracy(response, context)
# Prepare final response
final_response = self._prepare_final_response(
response,
search_results,
safety_check,
time.time() - start_time
)
# Cache the response (limit cache size)
if len(self.response_cache) < 100:
self.response_cache[query_hash] = final_response
if progress_callback:
progress_callback(1.0, "Complete!")
return final_response
except Exception as e:
logger.error(f"Error generating response: {e}")
if progress_callback:
progress_callback(1.0, f"Error: {str(e)}")
return self._create_error_response(str(e))
def _generate_response(self, query: str, context: str) -> str:
"""Enhanced response generation using model.generate() to avoid DynamicCache errors"""
if self.llm is None or self.tokenizer is None:
return self._generate_fallback_response(query, context)
# Build prompt with Gaza-specific context
prompt = f"""{self.system_prompt}
MEDICAL KNOWLEDGE CONTEXT:
{context}
PATIENT QUESTION: {query}
RESPONSE (provide practical, Gaza-appropriate medical guidance):"""
try:
# Tokenize and move to correct device
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.llm.device)
# Generate the response
outputs = self.llm.generate(
**inputs,
max_new_tokens=800,
temperature=0.5,
pad_token_id=self.tokenizer.eos_token_id,
do_sample=True,
repetition_penalty=1.15,
)
# Decode and clean up
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
lines = response_text.split('\n')
unique_lines = []
for line in lines:
line = line.strip()
if line and line not in unique_lines:
unique_lines.append(line)
return '\n'.join(unique_lines)
except Exception as e:
logger.error(f"Error in LLM generate(): {e}")
return self._generate_fallback_response(query, context)
# Decode and clean up
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
lines = response_text.split('\n')
unique_lines = []
for line in lines:
line = line.strip()
if line and line not in unique_lines:
unique_lines.append(line)
return '\n'.join(unique_lines)
def _prepare_context(self, search_results: List[Dict[str, Any]]) -> str:
"""Enhanced context preparation with better formatting"""
if not search_results:
return "No specific medical guidance found in knowledge base. Provide general first aid principles."
context_parts = []
for i, result in enumerate(search_results, 1):
source = result.get('source', 'unknown')
text = result.get('text', '')
priority = result.get('medical_priority', 'general')
# Truncate long text but preserve important information
if len(text) > 400:
text = text[:400] + "..."
context_parts.append(f"[Source {i}: {source} - Priority: {priority}]\n{text}")
return "\n\n".join(context_parts)
def _generate_response(self, query: str, context: str) -> str:
"""Enhanced response generation with better prompting"""
if not self.generation_pipeline:
return self._generate_fallback_response(query, context)
# Enhanced prompt structure
prompt = f"""{self.system_prompt}
MEDICAL KNOWLEDGE CONTEXT:
{context}
PATIENT QUESTION: {query}
RESPONSE (provide practical, Gaza-appropriate medical guidance):"""
try:
# Enhanced generation parameters
response = self.generation_pipeline(
prompt,
max_new_tokens=300, # Increased for more detailed responses
temperature=0.2, # Lower for more consistent medical advice
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.15,
truncation=True,
num_return_sequences=1
)
if response and len(response) > 0:
generated_text = response[0]['generated_text']
# Clean up the response
generated_text = generated_text.strip()
# Remove any repetitive patterns
lines = generated_text.split('\n')
unique_lines = []
for line in lines:
if line.strip() and line.strip() not in unique_lines:
unique_lines.append(line.strip())
return '\n'.join(unique_lines)
else:
return self._generate_fallback_response(query, context)
except Exception as e:
logger.error(f"Error in LLM generation: {e}")
return self._generate_fallback_response(query, context)
def _generate_fallback_response(self, query: str, context: str) -> str:
"""Enhanced fallback response with Gaza-specific guidance"""
gaza_guidance = {
"burn": "For burns: Use clean, cool water if available. If water is scarce, use clean cloth. Avoid ice. Seek medical help urgently.",
"bleeding": "For bleeding: Apply direct pressure with clean cloth. Elevate if possible. If severe, seek immediate medical attention.",
"wound": "For wounds: Clean hands if possible. Apply pressure to stop bleeding. Cover with clean material. Watch for infection signs.",
"infection": "Signs of infection: Redness, warmth, swelling, pus, fever. Seek medical care immediately if available.",
"pain": "For pain management: Rest, elevation, cold/warm compress as appropriate. Avoid aspirin in children."
}
query_lower = query.lower()
for condition, guidance in gaza_guidance.items():
if condition in query_lower:
return f"{guidance}\n\nContext from medical sources:\n{context[:200]}..."
return f"Medical guidance for: {query}\n\nGeneral advice: Prioritize safety, seek professional help when available, consider resource limitations in Gaza.\n\nRelevant information:\n{context[:300]}..."
def _prepare_final_response(
self,
response: str,
search_results: List[Dict[str, Any]],
safety_check: Dict[str, Any],
response_time: float
) -> Dict[str, Any]:
"""Enhanced final response preparation with more metadata"""
# Add safety warnings if needed
if not safety_check["is_safe"]:
response = f"β οΈ MEDICAL CAUTION: {response}\n\nπ¨ Please verify this guidance with a medical professional when possible."
# Add Gaza-specific disclaimer
response += "\n\nπ Gaza Context: This guidance considers resource limitations. Adapt based on available supplies and seek professional medical care when accessible."
# Extract unique sources
sources = list(set(res.get("source", "unknown") for res in search_results)) if search_results else []
# Calculate confidence based on multiple factors
base_confidence = safety_check.get("confidence_score", 0.5)
context_bonus = 0.1 if search_results else 0.0
safety_penalty = 0.2 if not safety_check.get("is_safe", True) else 0.0
final_confidence = max(0.0, min(1.0, base_confidence + context_bonus - safety_penalty))
return {
"response": response,
"confidence": final_confidence,
"sources": sources,
"search_results_count": len(search_results),
"safety_issues": safety_check.get("issues", []),
"safety_warnings": safety_check.get("warnings", []),
"response_time": round(response_time, 2),
"timestamp": datetime.now().isoformat()[:19],
"cached": False
}
def _create_error_response(self, error_msg: str) -> Dict[str, Any]:
"""Enhanced error response with helpful information"""
return {
"response": f"β οΈ System Error: Unable to process your medical query at this time.\n\nError: {error_msg}\n\nπ¨ For immediate medical emergencies, seek professional help directly.\n\nπ Gaza Emergency Numbers:\n- Palestinian Red Crescent: 101\n- Civil Defense: 102",
"confidence": 0.0,
"sources": [],
"search_results_count": 0,
"safety_issues": ["System error occurred"],
"safety_warnings": ["Unable to validate medical accuracy"],
"response_time": 0.0,
"timestamp": datetime.now().isoformat()[:19],
"cached": False,
"error": True
}
# Global system instance
enhanced_rag_system = None
def initialize_enhanced_system():
"""Initialize enhanced system with better error handling"""
global enhanced_rag_system
if enhanced_rag_system is None:
try:
enhanced_rag_system = EnhancedGazaRAGSystem()
enhanced_rag_system.initialize()
logger.info("Enhanced Gaza RAG System initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize enhanced system: {e}")
raise
return enhanced_rag_system
def process_medical_query_with_progress(query: str, progress=gr.Progress()) -> Tuple[str, str, str]:
"""Enhanced query processing with detailed progress tracking and status updates"""
if not query.strip():
return "Please enter a medical question.", "", "β οΈ No query provided"
try:
# Initialize system with progress
progress(0.05, desc="π§ Initializing system...")
system = initialize_enhanced_system()
# Create async event loop for progress tracking
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
def progress_callback(value, desc):
progress(value, desc=desc)
try:
# Run async generation with progress
result = loop.run_until_complete(
system.generate_response_async(query, progress_callback)
)
finally:
loop.close()
# Prepare response with enhanced metadata
response = result["response"]
# Prepare detailed metadata
metadata_parts = [
f"π― Confidence: {result['confidence']:.1%}",
f"β±οΈ Response: {result['response_time']}s",
f"π Sources: {result['search_results_count']} found"
]
if result.get('cached'):
metadata_parts.append("πΎ Cached")
if result.get('sources'):
metadata_parts.append(f"π Refs: {', '.join(result['sources'][:2])}")
metadata = " | ".join(metadata_parts)
# Prepare status with warnings/issues
status_parts = []
if result.get('safety_warnings'):
status_parts.append(f"β οΈ {len(result['safety_warnings'])} warnings")
if result.get('safety_issues'):
status_parts.append(f"π¨ {len(result['safety_issues'])} issues")
if not status_parts:
status_parts.append("β
Safe response")
status = " | ".join(status_parts)
return response, metadata, status
except Exception as e:
logger.error(f"Error processing query: {e}")
error_response = f"β οΈ Error processing your query: {str(e)}\n\nπ¨ For medical emergencies, seek immediate professional help."
error_metadata = f"β Error at {datetime.now().strftime('%H:%M:%S')}"
error_status = "π¨ System error occurred"
return error_response, error_metadata, error_status
def create_advanced_gradio_interface():
"""Create advanced Gradio interface with modern design and enhanced UX"""
# Advanced CSS with medical theme and animations
css = """
@import url('https://fonts.googleapis.com/css2?family=Love+Ya+Like+A+Sister&display=swap');
* {
font-family: 'Love Ya Like A Sister', cursive !important;
}
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
}
.main-container {
background: rgba(255, 255, 255, 0.95);
backdrop-filter: blur(10px);
border-radius: 20px;
padding: 30px;
margin: 20px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
border: 1px solid rgba(255,255,255,0.2);
}
.header-section {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 15px;
padding: 25px;
margin-bottom: 25px;
text-align: center;
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.3);
}
.query-container {
background: linear-gradient(135deg, #f8f9ff 0%, #e8f2ff 100%);
border-radius: 15px;
padding: 20px;
margin: 15px 0;
border: 2px solid #667eea;
transition: all 0.3s ease;
}
.query-container:hover {
transform: translateY(-2px);
box-shadow: 0 10px 25px rgba(102, 126, 234, 0.2);
}
.query-input {
border: none !important;
background: white !important;
border-radius: 12px !important;
padding: 15px !important;
font-size: 16px !important;
box-shadow: 0 4px 15px rgba(0,0,0,0.1) !important;
transition: all 0.3s ease !important;
}
.query-input:focus {
transform: scale(1.02) !important;
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.3) !important;
}
.response-container {
background: linear-gradient(135deg, #fff 0%, #f8f9ff 100%);
border-radius: 15px;
padding: 20px;
margin: 15px 0;
border: 2px solid #4CAF50;
min-height: 300px;
}
.response-output {
border: none !important;
background: transparent !important;
font-size: 15px !important;
line-height: 1.7 !important;
color: #2c3e50 !important;
}
.metadata-container {
background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%);
border-radius: 12px;
padding: 15px;
margin: 10px 0;
border-left: 5px solid #2196F3;
}
.metadata-output {
border: none !important;
background: transparent !important;
font-size: 13px !important;
color: #1565c0 !important;
font-weight: 500 !important;
}
.status-container {
background: linear-gradient(135deg, #e8f5e8 0%, #c8e6c9 100%);
border-radius: 12px;
padding: 15px;
margin: 10px 0;
border-left: 5px solid #4CAF50;
}
.status-output {
border: none !important;
background: transparent !important;
font-size: 13px !important;
color: #2e7d32 !important;
font-weight: 500 !important;
}
.submit-btn {
background: linear-gradient(135deg, #4CAF50 0%, #45a049 100%) !important;
color: white !important;
border: none !important;
border-radius: 12px !important;
padding: 15px 30px !important;
font-size: 16px !important;
font-weight: 600 !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.3) !important;
}
.submit-btn:hover {
transform: translateY(-3px) !important;
box-shadow: 0 10px 30px rgba(76, 175, 80, 0.4) !important;
}
.clear-btn {
background: linear-gradient(135deg, #ff7043 0%, #ff5722 100%) !important;
color: white !important;
border: none !important;
border-radius: 12px !important;
padding: 15px 25px !important;
font-size: 14px !important;
font-weight: 500 !important;
transition: all 0.3s ease !important;
}
.clear-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 8px 20px rgba(255, 87, 34, 0.3) !important;
}
.emergency-notice {
background: linear-gradient(135deg, #ffebee 0%, #ffcdd2 100%);
border: 2px solid #f44336;
border-radius: 15px;
padding: 20px;
margin: 20px 0;
color: #c62828;
font-weight: 600;
animation: pulse 2s infinite;
}
@keyframes pulse {
0% { box-shadow: 0 0 0 0 rgba(244, 67, 54, 0.4); }
70% { box-shadow: 0 0 0 10px rgba(244, 67, 54, 0); }
100% { box-shadow: 0 0 0 0 rgba(244, 67, 54, 0); }
}
.gaza-context {
background: linear-gradient(135deg, #e8f5e8 0%, #c8e6c9 100%);
border: 2px solid #4caf50;
border-radius: 15px;
padding: 20px;
margin: 20px 0;
color: #2e7d32;
font-weight: 500;
}
.sidebar-container {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border-radius: 15px;
padding: 20px;
margin: 10px 0;
border: 1px solid rgba(0,0,0,0.1);
}
.example-container {
background: white;
border-radius: 12px;
padding: 20px;
margin: 15px 0;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
}
.progress-container {
margin: 15px 0;
padding: 10px;
background: rgba(255,255,255,0.8);
border-radius: 10px;
}
.footer-section {
background: linear-gradient(135deg, #37474f 0%, #263238 100%);
color: white;
border-radius: 15px;
padding: 20px;
margin-top: 30px;
text-align: center;
}
/* GLOBAL TEXT FIXES */
.gradio-container,
.query-container,
.response-container,
.metadata-container,
.status-container {
color: white !important;
}
.query-input,
.response-output,
.metadata-output,
.status-output {
color: white !important;
background-color: rgba(0, 0, 0, 0.2) !important;
}
/* BANNER-INSPIRED PANEL BACKGROUNDS */
.query-container,
.response-container,
.metadata-container,
.status-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: 2px solid #ffffff22 !important;
border-radius: 15px !important;
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.3);
}
/* EXAMPLE SECTION BUTTON STYLING */
.example-container .example {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
font-weight: 600 !important;
border-radius: 12px !important;
padding: 15px !important;
margin: 10px !important;
text-align: center !important;
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.1);
transition: all 0.3s ease;
cursor: pointer;
}
.example-container .example:hover {
transform: scale(1.03);
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.4);
}
/* MAKE HEADER + EXAMPLES MORE PROMINENT */
.header-section {
color: white !important;
text-shadow: 0px 0px 6px rgba(0,0,0,0.4);
}
.example-container {
margin-top: -20px !important;
}
"""
with gr.Blocks(
css=css,
title="π₯ Advanced Gaza First Aid Assistant",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="green",
neutral_hue="slate"
)
) as interface:
# Header Section
with gr.Row(elem_classes=["main-container"]):
gr.HTML("""
<div class="header-section">
<h1 style="margin: 0; font-size: 2.5em; font-weight: 700;">
π₯ Advanced Gaza First Aid Assistant
</h1>
<h2 style="margin: 10px 0 0 0; font-size: 1.2em; font-weight: 400; opacity: 0.9;">
AI-Powered Medical Guidance for Gaza Healthcare Workers
</h2>
<p style="margin: 15px 0 0 0; font-size: 1em; opacity: 0.8;">
Enhanced with 768-dimensional medical embeddings β’ Advanced FAISS indexing β’ Real-time safety validation
</p>
</div>
""")
# Main Interface
with gr.Row(elem_classes=["main-container"]):
with gr.Column(scale=2):
# Query Input Section
with gr.Group(elem_classes=["query-container"]):
gr.Markdown("### π©Ί Medical Query Input")
query_input = gr.Textbox(
label="Describe your medical situation",
placeholder="Enter your first aid question or describe the medical emergency...",
lines=4,
elem_classes=["query-input"]
)
with gr.Row():
submit_btn = gr.Button(
"π Get Medical Guidance",
variant="primary",
elem_classes=["submit-btn"],
scale=3
)
clear_btn = gr.Button(
"ποΈ Clear",
variant="secondary",
elem_classes=["clear-btn"],
scale=1
)
with gr.Column(scale=1):
# Sidebar with Quick Access
with gr.Group(elem_classes=["sidebar-container"]):
gr.Markdown("""
### π― Quick Access Guide
**π¨ Emergency Priorities:**
- Severe bleeding control
- Burn treatment protocols
- Airway management
- Trauma stabilization
- Shock prevention
**π₯ Gaza-Specific Scenarios:**
- Limited water situations
- Power outage medical care
- Supply shortage alternatives
- Mass casualty protocols
- Improvised medical tools
**π System Status:**
- β
Enhanced embeddings active
- β
Advanced indexing enabled
- β
Safety validation online
- β
Gaza context aware
""")
# Response Section
with gr.Row(elem_classes=["main-container"]):
with gr.Column():
# Main Response
with gr.Group(elem_classes=["response-container"]):
gr.Markdown("### π©Ή Medical Guidance Response")
response_output = gr.Textbox(
label="AI Medical Guidance",
lines=15,
elem_classes=["response-output"],
interactive=False,
placeholder="Your medical guidance will appear here..."
)
# Metadata and Status
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_classes=["metadata-container"]):
metadata_output = gr.Textbox(
label="π Response Metadata",
lines=2,
elem_classes=["metadata-output"],
interactive=False,
placeholder="Response metadata will appear here..."
)
with gr.Column(scale=1):
with gr.Group(elem_classes=["status-container"]):
status_output = gr.Textbox(
label="π‘οΈ Safety Status",
lines=2,
elem_classes=["status-output"],
interactive=False,
placeholder="Safety validation status will appear here..."
)
# Important Notices
with gr.Row(elem_classes=["main-container"]):
gr.HTML("""
<div class="emergency-notice">
<h3 style="margin: 0 0 10px 0;">π¨ CRITICAL EMERGENCY DISCLAIMER</h3>
<p style="margin: 0; font-size: 1.1em;">
For life-threatening emergencies, seek immediate professional medical attention.<br>
π <strong>Gaza Emergency Contacts:</strong> Palestinian Red Crescent (101) | Civil Defense (102)
</p>
</div>
""")
with gr.Row(elem_classes=["main-container"]):
gr.HTML("""
<div class="gaza-context">
<h3 style="margin: 0 0 10px 0;">π Gaza Context Awareness</h3>
<p style="margin: 0; font-size: 1em;">
This advanced AI system is specifically designed for Gaza's challenging conditions including
limited resources, frequent power outages, and restricted medical supply access. All guidance
considers these constraints and provides practical alternatives when standard treatments are unavailable.
</p>
</div>
""")
# Examples Section
with gr.Row(elem_classes=["main-container"]):
with gr.Group(elem_classes=["example-container"]):
gr.Markdown("### π‘ Example Medical Scenarios")
example_queries = [
"How to treat severe burns when clean water is extremely limited?",
"Managing gunshot wounds with only basic household supplies",
"Recognizing and treating infection in wounds without antibiotics",
"Emergency care for children during extended power outages",
"Treating compound fractures without proper medical equipment",
"Managing diabetic emergencies when insulin is unavailable",
"Stopping arterial bleeding with improvised tourniquets",
"Recognizing and treating shock in mass casualty situations",
"Airway management for unconscious patients without equipment",
"Preventing infection in surgical wounds during siege conditions"
]
gr.Examples(
examples=example_queries,
inputs=query_input,
label="Click any example to try it:",
examples_per_page=5
)
# Event Handlers
submit_btn.click(
process_medical_query_with_progress,
inputs=query_input,
outputs=[response_output, metadata_output, status_output],
show_progress=True
)
query_input.submit(
process_medical_query_with_progress,
inputs=query_input,
outputs=[response_output, metadata_output, status_output],
show_progress=True
)
clear_btn.click(
lambda: ("", "", "", ""),
outputs=[query_input, response_output, metadata_output, status_output]
)
# Footer
with gr.Row(elem_classes=["main-container"]):
gr.HTML("""
<div class="footer-section">
<h3 style="margin: 0 0 15px 0;">π¬ Advanced Technical Features</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px; margin-bottom: 20px;">
<div>
<strong>π§ Enhanced AI:</strong><br>
768-dimensional medical embeddings<br>
Advanced FAISS IVF indexing<br>
Optimized LLM quantization
</div>
<div>
<strong>π‘οΈ Safety Systems:</strong><br>
Real-time medical validation<br>
Contraindication detection<br>
Gaza-specific risk assessment
</div>
<div>
<strong>β‘ Performance:</strong><br>
Async processing pipeline<br>
Intelligent response caching<br>
Progressive loading indicators
</div>
</div>
<hr style="border: 1px solid rgba(255,255,255,0.2); margin: 20px 0;">
<p style="margin: 0; opacity: 0.8;">
<strong>βοΈ Medical Disclaimer:</strong> This AI assistant provides educational guidance based on established medical protocols.
It is designed to support, not replace, medical professionals. Always consult qualified healthcare providers for definitive care.
</p>
</div>
""")
return interface
def main():
"""Enhanced main function with comprehensive error handling and system monitoring"""
logger.info("π Starting Advanced Gaza First Aid Assistant")
try:
# System initialization with detailed logging
logger.info("π§ Pre-initializing enhanced RAG system...")
system = initialize_enhanced_system()
# Verify system components
logger.info("β
Knowledge base initialized")
logger.info("β
Medical fact checker ready")
logger.info("β
Enhanced embeddings loaded")
logger.info("β
Advanced FAISS indexing active")
# Create and launch advanced interface
logger.info("π¨ Creating advanced Gradio interface...")
interface = create_advanced_gradio_interface()
logger.info("π Launching advanced interface...")
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
max_threads=6, # Increased for better async performance
show_error=True,
quiet=False,
favicon_path=None,
ssl_verify=False
)
except Exception as e:
logger.error(f"β Failed to start Advanced Gaza First Aid Assistant: {e}")
print(f"\nπ¨ STARTUP ERROR: {e}")
print("\nπ§ Troubleshooting Steps:")
print("1. Check if all dependencies are installed: pip install -r requirements.txt")
print("2. Ensure sufficient memory is available (minimum 4GB RAM recommended)")
print("3. Verify data directory exists and contains medical documents")
print("4. Check system logs for detailed error information")
print("\nπ For technical support, check the application logs above.")
sys.exit(1)
if __name__ == "__main__":
main()
|