Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,930 @@
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from llama_index.core import (
|
5 |
-
|
6 |
-
VectorStoreIndex,
|
|
|
7 |
StorageContext,
|
8 |
-
|
9 |
)
|
10 |
-
from llama_index.
|
11 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
|
|
12 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
13 |
-
from llama_index.core.node_parser import SentenceSplitter
|
14 |
-
from transformers import AutoTokenizer
|
15 |
-
import faiss
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
# Local LLM with 4-bit quantization
|
30 |
-
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
|
31 |
-
Settings.llm = HuggingFaceLLM(
|
32 |
-
model_name=LLM_MODEL,
|
33 |
-
tokenizer_name=LLM_MODEL,
|
34 |
-
device_map="auto",
|
35 |
-
model_kwargs={
|
36 |
-
"torch_dtype": torch.float16,
|
37 |
-
"trust_remote_code": True
|
38 |
-
}
|
39 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
return
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
-
|
92 |
-
fn=ask_question,
|
93 |
-
inputs=gr.Textbox(lines=2, placeholder="Ask a medical question..."),
|
94 |
-
outputs="text",
|
95 |
-
title="🩺 Gaza Field Medic Assistant (Offline)",
|
96 |
-
description="WHO protocols • No internet required • Arabic/English"
|
97 |
-
).launch(server_name="0.0.0.0")
|
|
|
1 |
+
|
2 |
import os
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
import warnings
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import List, Dict, Any, Optional, Tuple
|
9 |
+
import hashlib
|
10 |
+
import pickle
|
11 |
+
from datetime import datetime
|
12 |
+
|
13 |
+
# Suppress warnings for cleaner output
|
14 |
+
warnings.filterwarnings("ignore")
|
15 |
+
|
16 |
+
# Core dependencies
|
17 |
import gradio as gr
|
18 |
+
import numpy as np
|
19 |
+
import pandas as pd
|
20 |
+
from sentence_transformers import SentenceTransformer
|
21 |
+
import faiss
|
22 |
import torch
|
23 |
+
from transformers import (
|
24 |
+
AutoTokenizer,
|
25 |
+
AutoModelForCausalLM,
|
26 |
+
pipeline,
|
27 |
+
BitsAndBytesConfig
|
28 |
+
)
|
29 |
+
|
30 |
+
# Document processing
|
31 |
from llama_index.core import (
|
32 |
+
Document,
|
33 |
+
VectorStoreIndex,
|
34 |
+
ServiceContext,
|
35 |
StorageContext,
|
36 |
+
load_index_from_storage
|
37 |
)
|
38 |
+
from llama_index.core.node_parser import SentenceSplitter
|
39 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
40 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
41 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
|
|
|
|
|
|
42 |
|
43 |
+
# PDF processing
|
44 |
+
import PyPDF2
|
45 |
+
from io import BytesIO
|
46 |
+
|
47 |
+
# Medical knowledge validation
|
48 |
+
import re
|
49 |
+
from difflib import SequenceMatcher
|
50 |
+
|
51 |
+
# Configure logging
|
52 |
+
logging.basicConfig(
|
53 |
+
level=logging.INFO,
|
54 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
)
|
56 |
+
logger = logging.getLogger(__name__)
|
57 |
+
|
58 |
+
class MedicalFactChecker:
|
59 |
+
"""
|
60 |
+
Medical fact checking and hallucination detection system.
|
61 |
+
Validates generated responses against authoritative medical sources.
|
62 |
+
"""
|
63 |
+
|
64 |
+
def __init__(self):
|
65 |
+
self.medical_facts = self._load_medical_facts()
|
66 |
+
self.contraindications = self._load_contraindications()
|
67 |
+
self.dosage_patterns = self._compile_dosage_patterns()
|
68 |
+
|
69 |
+
def _load_medical_facts(self) -> Dict[str, Any]:
|
70 |
+
"""Load verified medical facts from authoritative sources."""
|
71 |
+
return {
|
72 |
+
"burn_treatment": {
|
73 |
+
"immediate_care": [
|
74 |
+
"Remove from heat source immediately",
|
75 |
+
"Cool with clean water for 10-20 minutes",
|
76 |
+
"Remove jewelry and loose clothing before swelling",
|
77 |
+
"Cover with clean, dry cloth",
|
78 |
+
"Do not apply ice, butter, or oils"
|
79 |
+
],
|
80 |
+
"severity_assessment": {
|
81 |
+
"first_degree": "Affects only outer layer of skin, red and painful",
|
82 |
+
"second_degree": "Affects outer and underlying layer, blisters form",
|
83 |
+
"third_degree": "Affects all layers, may appear white or charred"
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"wound_care": {
|
87 |
+
"cleaning": [
|
88 |
+
"Clean hands before treating wounds",
|
89 |
+
"Rinse wound with clean water",
|
90 |
+
"Apply gentle pressure to stop bleeding",
|
91 |
+
"Cover with sterile bandage"
|
92 |
+
],
|
93 |
+
"infection_signs": [
|
94 |
+
"Increased pain, redness, swelling",
|
95 |
+
"Warmth around wound",
|
96 |
+
"Pus or unusual discharge",
|
97 |
+
"Red streaking from wound",
|
98 |
+
"Fever"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
"emergency_priorities": {
|
102 |
+
"abc_assessment": [
|
103 |
+
"Airway - ensure clear and open",
|
104 |
+
"Breathing - check for normal breathing",
|
105 |
+
"Circulation - check pulse and control bleeding"
|
106 |
+
]
|
107 |
+
}
|
108 |
+
}
|
109 |
+
|
110 |
+
def _load_contraindications(self) -> Dict[str, List[str]]:
|
111 |
+
"""Load medical contraindications and dangerous practices."""
|
112 |
+
return {
|
113 |
+
"burns": [
|
114 |
+
"Do not apply ice directly to burns",
|
115 |
+
"Do not use butter, oils, or home remedies",
|
116 |
+
"Do not break blisters",
|
117 |
+
"Do not remove clothing stuck to burn"
|
118 |
+
],
|
119 |
+
"wounds": [
|
120 |
+
"Do not remove embedded objects",
|
121 |
+
"Do not use hydrogen peroxide on deep wounds",
|
122 |
+
"Do not ignore signs of infection"
|
123 |
+
],
|
124 |
+
"general": [
|
125 |
+
"Do not move suspected spinal injury patients unnecessarily",
|
126 |
+
"Do not give food or water to unconscious patients",
|
127 |
+
"Do not leave patients unattended if condition is serious"
|
128 |
+
]
|
129 |
+
}
|
130 |
+
|
131 |
+
def _compile_dosage_patterns(self) -> List[re.Pattern]:
|
132 |
+
"""Compile regex patterns for detecting medication dosages."""
|
133 |
+
patterns = [
|
134 |
+
r'\d+\s*mg\b', # milligrams
|
135 |
+
r'\d+\s*g\b', # grams
|
136 |
+
r'\d+\s*ml\b', # milliliters
|
137 |
+
r'\d+\s*tablets?\b', # tablets
|
138 |
+
r'\d+\s*times?\s+(?:per\s+)?day\b', # frequency
|
139 |
+
r'every\s+\d+\s+hours?\b' # intervals
|
140 |
+
]
|
141 |
+
return [re.compile(pattern, re.IGNORECASE) for pattern in patterns]
|
142 |
+
|
143 |
+
def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]:
|
144 |
+
"""
|
145 |
+
Check medical accuracy of generated response against context and facts.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
response: Generated response text
|
149 |
+
context: Retrieved context from knowledge base
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
Dictionary with accuracy assessment and confidence score
|
153 |
+
"""
|
154 |
+
accuracy_score = 0.0
|
155 |
+
issues = []
|
156 |
+
warnings = []
|
157 |
+
|
158 |
+
# Check for contraindications
|
159 |
+
contraindication_issues = self._check_contraindications(response)
|
160 |
+
if contraindication_issues:
|
161 |
+
issues.extend(contraindication_issues)
|
162 |
+
accuracy_score -= 0.3
|
163 |
+
|
164 |
+
# Check context alignment
|
165 |
+
context_similarity = self._calculate_context_similarity(response, context)
|
166 |
+
if context_similarity < 0.7:
|
167 |
+
warnings.append(f"Low context similarity: {context_similarity:.2f}")
|
168 |
+
accuracy_score -= 0.2
|
169 |
+
|
170 |
+
# Check for unsupported medical claims
|
171 |
+
unsupported_claims = self._detect_unsupported_claims(response, context)
|
172 |
+
if unsupported_claims:
|
173 |
+
issues.extend(unsupported_claims)
|
174 |
+
accuracy_score -= 0.4
|
175 |
+
|
176 |
+
# Check dosage information if present
|
177 |
+
dosage_issues = self._validate_dosages(response)
|
178 |
+
if dosage_issues:
|
179 |
+
warnings.extend(dosage_issues)
|
180 |
+
accuracy_score -= 0.1
|
181 |
+
|
182 |
+
# Calculate final confidence score
|
183 |
+
confidence_score = max(0.0, min(1.0, 0.8 + accuracy_score))
|
184 |
+
|
185 |
+
return {
|
186 |
+
"confidence_score": confidence_score,
|
187 |
+
"issues": issues,
|
188 |
+
"warnings": warnings,
|
189 |
+
"context_similarity": context_similarity,
|
190 |
+
"is_safe": len(issues) == 0 and confidence_score > 0.6
|
191 |
+
}
|
192 |
+
|
193 |
+
def _check_contraindications(self, response: str) -> List[str]:
|
194 |
+
"""Check for dangerous medical advice in response."""
|
195 |
+
issues = []
|
196 |
+
response_lower = response.lower()
|
197 |
+
|
198 |
+
for category, contraindications in self.contraindications.items():
|
199 |
+
for contraindication in contraindications:
|
200 |
+
# Simple keyword matching for contraindications
|
201 |
+
keywords = contraindication.lower().split()
|
202 |
+
if len(keywords) > 2: # Check for phrase presence
|
203 |
+
key_phrase = " ".join(keywords[2:]) # Remove "do not"
|
204 |
+
if key_phrase in response_lower and "do not" not in response_lower:
|
205 |
+
issues.append(f"Potential contraindication detected: {contraindication}")
|
206 |
+
|
207 |
+
return issues
|
208 |
+
|
209 |
+
def _calculate_context_similarity(self, response: str, context: str) -> float:
|
210 |
+
"""Calculate semantic similarity between response and context."""
|
211 |
+
if not context or not response:
|
212 |
+
return 0.0
|
213 |
+
|
214 |
+
# Simple similarity based on common medical terms
|
215 |
+
response_words = set(response.lower().split())
|
216 |
+
context_words = set(context.lower().split())
|
217 |
+
|
218 |
+
if not response_words or not context_words:
|
219 |
+
return 0.0
|
220 |
+
|
221 |
+
intersection = response_words.intersection(context_words)
|
222 |
+
union = response_words.union(context_words)
|
223 |
+
|
224 |
+
return len(intersection) / len(union) if union else 0.0
|
225 |
+
|
226 |
+
def _detect_unsupported_claims(self, response: str, context: str) -> List[str]:
|
227 |
+
"""Detect medical claims not supported by context."""
|
228 |
+
issues = []
|
229 |
+
|
230 |
+
# Look for definitive medical statements
|
231 |
+
definitive_patterns = [
|
232 |
+
r'always\s+(?:use|take|apply)',
|
233 |
+
r'never\s+(?:use|take|apply)',
|
234 |
+
r'will\s+(?:cure|heal|fix)',
|
235 |
+
r'guaranteed\s+to',
|
236 |
+
r'completely\s+(?:safe|effective)'
|
237 |
+
]
|
238 |
+
|
239 |
+
for pattern in definitive_patterns:
|
240 |
+
if re.search(pattern, response, re.IGNORECASE):
|
241 |
+
if not self._claim_supported_by_context(pattern, context):
|
242 |
+
issues.append(f"Unsupported definitive claim detected: {pattern}")
|
243 |
+
|
244 |
+
return issues
|
245 |
+
|
246 |
+
def _claim_supported_by_context(self, claim_pattern: str, context: str) -> bool:
|
247 |
+
"""Check if a claim is supported by the context."""
|
248 |
+
# Simplified check - in production, this would be more sophisticated
|
249 |
+
return len(context) > 100 # Basic context length check
|
250 |
+
|
251 |
+
def _validate_dosages(self, response: str) -> List[str]:
|
252 |
+
"""Validate any dosage information in the response."""
|
253 |
+
warnings = []
|
254 |
+
|
255 |
+
for pattern in self.dosage_patterns:
|
256 |
+
matches = pattern.findall(response)
|
257 |
+
if matches:
|
258 |
+
warnings.append("Dosage information detected - verify with medical professional")
|
259 |
+
break
|
260 |
+
|
261 |
+
return warnings
|
262 |
+
|
263 |
+
class GazaKnowledgeBase:
|
264 |
+
"""
|
265 |
+
Specialized knowledge base for Gaza medical information.
|
266 |
+
Handles document processing, indexing, and retrieval.
|
267 |
+
"""
|
268 |
+
|
269 |
+
def __init__(self, data_dir: str = "./data"):
|
270 |
+
self.data_dir = Path(data_dir)
|
271 |
+
self.embedding_model = None
|
272 |
+
self.vector_store = None
|
273 |
+
self.index = None
|
274 |
+
self.documents = []
|
275 |
+
|
276 |
+
# Gaza-specific medical priorities
|
277 |
+
self.medical_priorities = {
|
278 |
+
"trauma": ["gunshot wounds", "blast injuries", "burns", "fractures"],
|
279 |
+
"infectious": ["cholera", "dysentery", "respiratory infections"],
|
280 |
+
"chronic": ["diabetes", "hypertension", "malnutrition"],
|
281 |
+
"emergency": ["cardiac arrest", "severe bleeding", "airway obstruction"]
|
282 |
+
}
|
283 |
+
|
284 |
+
def initialize(self):
|
285 |
+
"""Initialize the knowledge base with embeddings and vector store."""
|
286 |
+
logger.info("Initializing Gaza Knowledge Base...")
|
287 |
+
|
288 |
+
# Initialize embedding model
|
289 |
+
self.embedding_model = SentenceTransformer(
|
290 |
+
'sentence-transformers/all-MiniLM-L6-v2',
|
291 |
+
device='cpu' # Use CPU for better compatibility
|
292 |
+
)
|
293 |
+
|
294 |
+
# Load or create vector store
|
295 |
+
self._load_or_create_vector_store()
|
296 |
+
|
297 |
+
logger.info("Knowledge base initialization complete.")
|
298 |
+
|
299 |
+
def _load_or_create_vector_store(self):
|
300 |
+
"""Load existing vector store or create new one."""
|
301 |
+
vector_store_path = self.data_dir / "vector_store"
|
302 |
+
|
303 |
+
if vector_store_path.exists():
|
304 |
+
logger.info("Loading existing vector store...")
|
305 |
+
self._load_vector_store(vector_store_path)
|
306 |
+
else:
|
307 |
+
logger.info("Creating new vector store...")
|
308 |
+
self._create_vector_store()
|
309 |
+
self._save_vector_store(vector_store_path)
|
310 |
+
|
311 |
+
def _create_vector_store(self):
|
312 |
+
"""Create vector store from documents."""
|
313 |
+
# Load documents
|
314 |
+
self.documents = self._load_documents()
|
315 |
+
|
316 |
+
if not self.documents:
|
317 |
+
logger.warning("No documents found. Creating empty vector store.")
|
318 |
+
# Create empty FAISS index
|
319 |
+
dimension = 384 # all-MiniLM-L6-v2 dimension
|
320 |
+
self.vector_store = faiss.IndexFlatL2(dimension)
|
321 |
+
return
|
322 |
+
|
323 |
+
# Process documents into chunks
|
324 |
+
chunks = self._process_documents(self.documents)
|
325 |
+
|
326 |
+
# Create embeddings
|
327 |
+
embeddings = self._create_embeddings(chunks)
|
328 |
+
|
329 |
+
# Create FAISS index
|
330 |
+
dimension = embeddings.shape[1]
|
331 |
+
self.vector_store = faiss.IndexFlatL2(dimension)
|
332 |
+
self.vector_store.add(embeddings.astype('float32'))
|
333 |
+
|
334 |
+
# Store chunk metadata
|
335 |
+
self.chunk_metadata = chunks
|
336 |
+
|
337 |
+
logger.info(f"Created vector store with {len(chunks)} chunks")
|
338 |
+
|
339 |
+
def _load_documents(self) -> List[Document]:
|
340 |
+
"""Load medical documents from data directory."""
|
341 |
+
documents = []
|
342 |
+
|
343 |
+
if not self.data_dir.exists():
|
344 |
+
logger.warning(f"Data directory {self.data_dir} does not exist")
|
345 |
+
return documents
|
346 |
+
|
347 |
+
# Load PDF files
|
348 |
+
for pdf_file in self.data_dir.glob("*.pdf"):
|
349 |
+
try:
|
350 |
+
doc_text = self._extract_pdf_text(pdf_file)
|
351 |
+
if doc_text:
|
352 |
+
documents.append(Document(
|
353 |
+
text=doc_text,
|
354 |
+
metadata={"source": str(pdf_file), "type": "pdf"}
|
355 |
+
))
|
356 |
+
logger.info(f"Loaded document: {pdf_file.name}")
|
357 |
+
except Exception as e:
|
358 |
+
logger.error(f"Error loading {pdf_file}: {e}")
|
359 |
+
|
360 |
+
# Load text files
|
361 |
+
for txt_file in self.data_dir.glob("*.txt"):
|
362 |
+
try:
|
363 |
+
with open(txt_file, 'r', encoding='utf-8') as f:
|
364 |
+
doc_text = f.read()
|
365 |
+
documents.append(Document(
|
366 |
+
text=doc_text,
|
367 |
+
metadata={"source": str(txt_file), "type": "text"}
|
368 |
+
))
|
369 |
+
logger.info(f"Loaded document: {txt_file.name}")
|
370 |
+
except Exception as e:
|
371 |
+
logger.error(f"Error loading {txt_file}: {e}")
|
372 |
+
|
373 |
+
return documents
|
374 |
+
|
375 |
+
def _extract_pdf_text(self, pdf_path: Path) -> str:
|
376 |
+
"""Extract text from PDF file."""
|
377 |
+
try:
|
378 |
+
with open(pdf_path, 'rb') as file:
|
379 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
380 |
+
text = ""
|
381 |
+
for page in pdf_reader.pages:
|
382 |
+
text += page.extract_text() + "\n"
|
383 |
+
return text
|
384 |
+
except Exception as e:
|
385 |
+
logger.error(f"Error extracting text from {pdf_path}: {e}")
|
386 |
+
return ""
|
387 |
+
|
388 |
+
def _process_documents(self, documents: List[Document]) -> List[Dict[str, Any]]:
|
389 |
+
"""Process documents into chunks with metadata."""
|
390 |
+
chunks = []
|
391 |
+
|
392 |
+
# Initialize sentence splitter
|
393 |
+
splitter = SentenceSplitter(
|
394 |
+
chunk_size=512,
|
395 |
+
chunk_overlap=50
|
396 |
+
)
|
397 |
+
|
398 |
+
for doc in documents:
|
399 |
+
# Split document into chunks
|
400 |
+
doc_chunks = splitter.split_text(doc.text)
|
401 |
+
|
402 |
+
for i, chunk_text in enumerate(doc_chunks):
|
403 |
+
# Enhance chunk with Gaza-specific medical context
|
404 |
+
enhanced_chunk = self._enhance_medical_context(chunk_text)
|
405 |
+
|
406 |
+
chunks.append({
|
407 |
+
"text": enhanced_chunk,
|
408 |
+
"original_text": chunk_text,
|
409 |
+
"source": doc.metadata.get("source", "unknown"),
|
410 |
+
"chunk_id": f"{doc.metadata.get('source', 'unknown')}_{i}",
|
411 |
+
"medical_priority": self._assess_medical_priority(chunk_text)
|
412 |
+
})
|
413 |
+
|
414 |
+
return chunks
|
415 |
+
|
416 |
+
def _enhance_medical_context(self, text: str) -> str:
|
417 |
+
"""Enhance text with Gaza-specific medical context."""
|
418 |
+
# Add context about resource constraints
|
419 |
+
if any(term in text.lower() for term in ["treatment", "medication", "supplies"]):
|
420 |
+
text += "\n[Gaza Context: Consider resource limitations and alternative treatments when standard supplies are unavailable.]"
|
421 |
+
|
422 |
+
# Add urgency context for trauma
|
423 |
+
if any(term in text.lower() for term in ["bleeding", "wound", "trauma", "injury"]):
|
424 |
+
text += "\n[Gaza Context: In conflict situations, prioritize immediate life-saving interventions.]"
|
425 |
+
|
426 |
+
return text
|
427 |
+
|
428 |
+
def _assess_medical_priority(self, text: str) -> str:
|
429 |
+
"""Assess medical priority level of text content."""
|
430 |
+
text_lower = text.lower()
|
431 |
+
|
432 |
+
for priority, keywords in self.medical_priorities.items():
|
433 |
+
if any(keyword in text_lower for keyword in keywords):
|
434 |
+
return priority
|
435 |
+
|
436 |
+
return "general"
|
437 |
+
|
438 |
+
def _create_embeddings(self, chunks: List[Dict[str, Any]]) -> np.ndarray:
|
439 |
+
"""Create embeddings for text chunks."""
|
440 |
+
texts = [chunk["text"] for chunk in chunks]
|
441 |
+
embeddings = self.embedding_model.encode(texts, show_progress_bar=True)
|
442 |
+
return embeddings
|
443 |
+
|
444 |
+
def _save_vector_store(self, path: Path):
|
445 |
+
"""Save vector store and metadata to disk."""
|
446 |
+
path.mkdir(parents=True, exist_ok=True)
|
447 |
+
|
448 |
+
# Save FAISS index
|
449 |
+
faiss.write_index(self.vector_store, str(path / "index.faiss"))
|
450 |
+
|
451 |
+
# Save metadata
|
452 |
+
with open(path / "metadata.pkl", 'wb') as f:
|
453 |
+
pickle.dump(self.chunk_metadata, f)
|
454 |
+
|
455 |
+
logger.info(f"Vector store saved to {path}")
|
456 |
+
|
457 |
+
def _load_vector_store(self, path: Path):
|
458 |
+
"""Load vector store and metadata from disk."""
|
459 |
+
# Load FAISS index
|
460 |
+
self.vector_store = faiss.read_index(str(path / "index.faiss"))
|
461 |
+
|
462 |
+
# Load metadata
|
463 |
+
with open(path / "metadata.pkl", 'rb') as f:
|
464 |
+
self.chunk_metadata = pickle.load(f)
|
465 |
+
|
466 |
+
logger.info(f"Vector store loaded from {path}")
|
467 |
+
|
468 |
+
def search(self, query: str, k: int = 5) -> List[Dict[str, Any]]:
|
469 |
+
"""Search for relevant medical information."""
|
470 |
+
if self.vector_store is None:
|
471 |
+
return []
|
472 |
+
|
473 |
+
# Create query embedding
|
474 |
+
query_embedding = self.embedding_model.encode([query])
|
475 |
+
|
476 |
+
# Search vector store
|
477 |
+
scores, indices = self.vector_store.search(
|
478 |
+
query_embedding.astype('float32'), k
|
479 |
+
)
|
480 |
+
|
481 |
+
# Prepare results
|
482 |
+
results = []
|
483 |
+
for score, idx in zip(scores[0], indices[0]):
|
484 |
+
if idx < len(self.chunk_metadata):
|
485 |
+
chunk = self.chunk_metadata[idx]
|
486 |
+
results.append({
|
487 |
+
"text": chunk["original_text"],
|
488 |
+
"source": chunk["source"],
|
489 |
+
"score": float(score),
|
490 |
+
"medical_priority": chunk["medical_priority"]
|
491 |
+
})
|
492 |
+
|
493 |
+
return results
|
494 |
+
|
495 |
+
class GazaRAGSystem:
|
496 |
+
"""
|
497 |
+
Main RAG system for Gaza First Aid Assistant.
|
498 |
+
Integrates knowledge base, language model, and safety checks.
|
499 |
+
"""
|
500 |
+
|
501 |
+
def __init__(self):
|
502 |
+
self.knowledge_base = GazaKnowledgeBase()
|
503 |
+
self.fact_checker = MedicalFactChecker()
|
504 |
+
self.llm = None
|
505 |
+
self.tokenizer = None
|
506 |
+
|
507 |
+
# System prompts
|
508 |
+
self.system_prompt = self._create_system_prompt()
|
509 |
+
|
510 |
+
def initialize(self):
|
511 |
+
"""Initialize the RAG system."""
|
512 |
+
logger.info("Initializing Gaza RAG System...")
|
513 |
+
|
514 |
+
# Initialize knowledge base
|
515 |
+
self.knowledge_base.initialize()
|
516 |
+
|
517 |
+
# Initialize language model
|
518 |
+
self._initialize_llm()
|
519 |
+
|
520 |
+
logger.info("RAG system initialization complete.")
|
521 |
+
|
522 |
+
def _initialize_llm(self):
|
523 |
+
"""Initialize the language model with optimization for medical use."""
|
524 |
+
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
525 |
+
|
526 |
+
try:
|
527 |
+
# Configure quantization for efficiency
|
528 |
+
quantization_config = BitsAndBytesConfig(
|
529 |
+
load_in_4bit=True,
|
530 |
+
bnb_4bit_compute_dtype=torch.float16,
|
531 |
+
bnb_4bit_use_double_quant=True,
|
532 |
+
bnb_4bit_quant_type="nf4"
|
533 |
+
)
|
534 |
+
|
535 |
+
# Load tokenizer
|
536 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
537 |
+
model_name,
|
538 |
+
trust_remote_code=True
|
539 |
+
)
|
540 |
+
|
541 |
+
# Load model
|
542 |
+
self.llm = AutoModelForCausalLM.from_pretrained(
|
543 |
+
model_name,
|
544 |
+
quantization_config=quantization_config,
|
545 |
+
device_map="auto",
|
546 |
+
trust_remote_code=True,
|
547 |
+
torch_dtype=torch.float16
|
548 |
+
)
|
549 |
+
|
550 |
+
logger.info(f"Loaded model: {model_name}")
|
551 |
+
|
552 |
+
except Exception as e:
|
553 |
+
logger.error(f"Error loading model: {e}")
|
554 |
+
# Fallback to a simpler model or CPU-only mode
|
555 |
+
self._initialize_fallback_llm()
|
556 |
+
|
557 |
+
def _initialize_fallback_llm(self):
|
558 |
+
"""Initialize fallback LLM for cases where main model fails."""
|
559 |
+
try:
|
560 |
+
# Use a smaller, more compatible model
|
561 |
+
model_name = "microsoft/DialoGPT-medium"
|
562 |
+
|
563 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
564 |
+
self.llm = AutoModelForCausalLM.from_pretrained(
|
565 |
+
model_name,
|
566 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
567 |
+
)
|
568 |
+
|
569 |
+
logger.info(f"Loaded fallback model: {model_name}")
|
570 |
+
|
571 |
+
except Exception as e:
|
572 |
+
logger.error(f"Error loading fallback model: {e}")
|
573 |
+
self.llm = None
|
574 |
+
self.tokenizer = None
|
575 |
+
|
576 |
+
def _create_system_prompt(self) -> str:
|
577 |
+
"""Create system prompt for medical AI assistant."""
|
578 |
+
return """You are a specialized medical AI assistant designed to provide first aid guidance for healthcare workers in Gaza. Your responses must be:
|
579 |
+
|
580 |
+
1. MEDICALLY ACCURATE: Base all advice on established medical protocols from WHO, ICRC, and MSF guidelines.
|
581 |
+
|
582 |
+
2. RESOURCE-AWARE: Consider the limited medical supplies and infrastructure in Gaza. Suggest alternatives when standard treatments are unavailable.
|
583 |
+
|
584 |
+
3. SAFETY-FIRST: Always prioritize patient safety. If uncertain, recommend seeking professional medical attention.
|
585 |
+
|
586 |
+
4. CLEAR AND ACTIONABLE: Provide step-by-step instructions that can be followed by healthcare workers under pressure.
|
587 |
+
|
588 |
+
5. CONTEXT-APPROPRIATE: Consider the conflict environment and adapt advice accordingly.
|
589 |
+
|
590 |
+
IMPORTANT SAFETY GUIDELINES:
|
591 |
+
- Never provide definitive diagnoses
|
592 |
+
- Always recommend professional medical evaluation for serious conditions
|
593 |
+
- Clearly state when immediate emergency care is needed
|
594 |
+
- Acknowledge limitations of remote medical advice
|
595 |
+
- Provide source attribution when possible
|
596 |
+
|
597 |
+
Remember: You are providing guidance to support medical professionals, not replace them."""
|
598 |
+
|
599 |
+
def generate_response(self, query: str) -> Dict[str, Any]:
|
600 |
+
"""Generate response to medical query with safety checks."""
|
601 |
+
try:
|
602 |
+
# Search knowledge base
|
603 |
+
search_results = self.knowledge_base.search(query, k=3)
|
604 |
+
|
605 |
+
# Prepare context
|
606 |
+
context = self._prepare_context(search_results)
|
607 |
+
|
608 |
+
# Generate response
|
609 |
+
response = self._generate_llm_response(query, context)
|
610 |
+
|
611 |
+
# Perform safety checks
|
612 |
+
safety_check = self.fact_checker.check_medical_accuracy(response, context)
|
613 |
+
|
614 |
+
# Prepare final response
|
615 |
+
final_response = self._prepare_final_response(
|
616 |
+
query, response, search_results, safety_check
|
617 |
+
)
|
618 |
+
|
619 |
+
return final_response
|
620 |
+
|
621 |
+
except Exception as e:
|
622 |
+
logger.error(f"Error generating response: {e}")
|
623 |
+
return self._create_error_response(str(e))
|
624 |
+
|
625 |
+
def _prepare_context(self, search_results: List[Dict[str, Any]]) -> str:
|
626 |
+
"""Prepare context from search results."""
|
627 |
+
if not search_results:
|
628 |
+
return "No specific medical information found in knowledge base."
|
629 |
+
|
630 |
+
context_parts = []
|
631 |
+
for result in search_results:
|
632 |
+
context_parts.append(f"Source: {result['source']}")
|
633 |
+
context_parts.append(f"Content: {result['text']}")
|
634 |
+
context_parts.append("---")
|
635 |
+
|
636 |
+
return "\n".join(context_parts)
|
637 |
+
|
638 |
+
def _generate_llm_response(self, query: str, context: str) -> str:
|
639 |
+
"""Generate response using language model."""
|
640 |
+
if self.llm is None or self.tokenizer is None:
|
641 |
+
return self._generate_fallback_response(query, context)
|
642 |
+
|
643 |
+
try:
|
644 |
+
# Prepare prompt
|
645 |
+
prompt = f"""{self.system_prompt}
|
646 |
+
|
647 |
+
Context from medical knowledge base:
|
648 |
+
{context}
|
649 |
+
|
650 |
+
User Question: {query}
|
651 |
+
|
652 |
+
Medical Response:"""
|
653 |
+
|
654 |
+
# Tokenize input
|
655 |
+
inputs = self.tokenizer.encode(prompt, return_tensors="pt")
|
656 |
+
|
657 |
+
# Generate response
|
658 |
+
with torch.no_grad():
|
659 |
+
outputs = self.llm.generate(
|
660 |
+
inputs,
|
661 |
+
max_new_tokens=512,
|
662 |
+
temperature=0.3, # Low temperature for medical accuracy
|
663 |
+
do_sample=True,
|
664 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
665 |
+
repetition_penalty=1.1
|
666 |
+
)
|
667 |
+
|
668 |
+
# Decode response
|
669 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
670 |
+
|
671 |
+
# Extract generated part
|
672 |
+
response = response[len(prompt):].strip()
|
673 |
+
|
674 |
+
return response
|
675 |
+
|
676 |
+
except Exception as e:
|
677 |
+
logger.error(f"Error in LLM generation: {e}")
|
678 |
+
return self._generate_fallback_response(query, context)
|
679 |
+
|
680 |
+
def _generate_fallback_response(self, query: str, context: str) -> str:
|
681 |
+
"""Generate fallback response when LLM is unavailable."""
|
682 |
+
return f"""I apologize, but I'm currently unable to process your medical query due to technical limitations.
|
683 |
+
|
684 |
+
For the question: "{query}"
|
685 |
+
|
686 |
+
Please consult the following medical resources:
|
687 |
+
- WHO Emergency Care Guidelines
|
688 |
+
- ICRC First Aid Manual
|
689 |
+
- Local medical professionals
|
690 |
+
|
691 |
+
In any medical emergency, seek immediate professional medical attention.
|
692 |
|
693 |
+
Available context from knowledge base:
|
694 |
+
{context[:500]}..."""
|
695 |
+
|
696 |
+
def _prepare_final_response(
|
697 |
+
self,
|
698 |
+
query: str,
|
699 |
+
response: str,
|
700 |
+
search_results: List[Dict[str, Any]],
|
701 |
+
safety_check: Dict[str, Any]
|
702 |
+
) -> Dict[str, Any]:
|
703 |
+
"""Prepare final response with safety information."""
|
704 |
+
|
705 |
+
# Add safety warnings if needed
|
706 |
+
if not safety_check["is_safe"]:
|
707 |
+
response = f"⚠️ SAFETY WARNING: This response requires verification.\n\n{response}"
|
708 |
+
|
709 |
+
if safety_check["confidence_score"] < 0.7:
|
710 |
+
response += f"\n\n⚠️ Confidence Level: {safety_check['confidence_score']:.1%} - Please verify with medical professional."
|
711 |
+
|
712 |
+
# Add source attribution
|
713 |
+
if search_results:
|
714 |
+
sources = list(set([result["source"] for result in search_results]))
|
715 |
+
response += f"\n\nSources: {', '.join(sources)}"
|
716 |
+
|
717 |
+
# Add disclaimer
|
718 |
+
response += "\n\n⚠️ MEDICAL DISCLAIMER: This is AI-generated guidance for educational purposes. Always consult qualified medical professionals for diagnosis and treatment decisions."
|
719 |
+
|
720 |
+
return {
|
721 |
+
"response": response,
|
722 |
+
"confidence_score": safety_check["confidence_score"],
|
723 |
+
"safety_issues": safety_check["issues"],
|
724 |
+
"safety_warnings": safety_check["warnings"],
|
725 |
+
"sources": [result["source"] for result in search_results],
|
726 |
+
"timestamp": datetime.now().isoformat()
|
727 |
+
}
|
728 |
+
|
729 |
+
def _create_error_response(self, error_message: str) -> Dict[str, Any]:
|
730 |
+
"""Create error response."""
|
731 |
+
return {
|
732 |
+
"response": f"I apologize, but I encountered an error processing your request: {error_message}\n\nPlease try rephrasing your question or consult medical professionals directly.",
|
733 |
+
"confidence_score": 0.0,
|
734 |
+
"safety_issues": ["System error occurred"],
|
735 |
+
"safety_warnings": ["Unable to verify medical accuracy due to system error"],
|
736 |
+
"sources": [],
|
737 |
+
"timestamp": datetime.now().isoformat()
|
738 |
+
}
|
739 |
+
|
740 |
+
# Global RAG system instance
|
741 |
+
rag_system = None
|
742 |
+
|
743 |
+
def initialize_system():
|
744 |
+
"""Initialize the RAG system."""
|
745 |
+
global rag_system
|
746 |
+
|
747 |
+
if rag_system is None:
|
748 |
+
rag_system = GazaRAGSystem()
|
749 |
+
rag_system.initialize()
|
750 |
+
|
751 |
+
return rag_system
|
752 |
+
|
753 |
+
def process_medical_query(query: str) -> str:
|
754 |
+
"""Process medical query and return response."""
|
755 |
+
if not query.strip():
|
756 |
+
return "Please enter a medical question."
|
757 |
+
|
758 |
+
try:
|
759 |
+
# Initialize system if needed
|
760 |
+
system = initialize_system()
|
761 |
+
|
762 |
+
# Generate response
|
763 |
+
result = system.generate_response(query)
|
764 |
+
|
765 |
+
return result["response"]
|
766 |
+
|
767 |
+
except Exception as e:
|
768 |
+
logger.error(f"Error processing query: {e}")
|
769 |
+
return f"I apologize, but I encountered an error: {str(e)}\n\nPlease try again or consult medical professionals directly."
|
770 |
+
|
771 |
+
def create_gradio_interface():
|
772 |
+
"""Create Gradio interface for the application."""
|
773 |
+
|
774 |
+
# Custom CSS for medical theme
|
775 |
+
css = """
|
776 |
+
.medical-header {
|
777 |
+
background: linear-gradient(90deg, #2c5aa0 0%, #1e3a8a 100%);
|
778 |
+
color: white;
|
779 |
+
padding: 20px;
|
780 |
+
border-radius: 10px;
|
781 |
+
margin-bottom: 20px;
|
782 |
+
text-align: center;
|
783 |
+
}
|
784 |
+
|
785 |
+
.warning-box {
|
786 |
+
background-color: #fef3cd;
|
787 |
+
border: 1px solid #ffeaa7;
|
788 |
+
border-radius: 5px;
|
789 |
+
padding: 15px;
|
790 |
+
margin: 10px 0;
|
791 |
+
}
|
792 |
+
|
793 |
+
.emergency-notice {
|
794 |
+
background-color: #f8d7da;
|
795 |
+
border: 1px solid #f5c6cb;
|
796 |
+
border-radius: 5px;
|
797 |
+
padding: 15px;
|
798 |
+
margin: 10px 0;
|
799 |
+
font-weight: bold;
|
800 |
+
}
|
801 |
+
"""
|
802 |
+
|
803 |
+
with gr.Blocks(css=css, title="Gaza First Aid Assistant") as interface:
|
804 |
+
|
805 |
+
# Header
|
806 |
+
gr.HTML("""
|
807 |
+
<div class="medical-header">
|
808 |
+
<h1>🏥 Gaza First Aid Assistant</h1>
|
809 |
+
<p>Specialized Medical Guidance for Healthcare Workers in Gaza</p>
|
810 |
+
<p><em>Enhanced with Offline Capabilities and Safety Validation</em></p>
|
811 |
+
</div>
|
812 |
+
""")
|
813 |
+
|
814 |
+
# Emergency notice
|
815 |
+
gr.HTML("""
|
816 |
+
<div class="emergency-notice">
|
817 |
+
🚨 EMERGENCY NOTICE: For life-threatening emergencies, seek immediate professional medical attention.
|
818 |
+
This AI assistant provides guidance to support, not replace, medical professionals.
|
819 |
+
</div>
|
820 |
+
""")
|
821 |
+
|
822 |
+
# Main interface
|
823 |
+
with gr.Row():
|
824 |
+
with gr.Column(scale=2):
|
825 |
+
query_input = gr.Textbox(
|
826 |
+
label="Medical Question",
|
827 |
+
placeholder="Enter your first aid or medical question here...",
|
828 |
+
lines=3
|
829 |
+
)
|
830 |
+
|
831 |
+
submit_btn = gr.Button("Get Medical Guidance", variant="primary")
|
832 |
+
|
833 |
+
# Example queries
|
834 |
+
gr.Examples(
|
835 |
+
examples=[
|
836 |
+
"My patient is feeling dizzy, what do i do",
|
837 |
+
"How to treat a gun wound",
|
838 |
+
"How do i treat patients with stab wounds",
|
839 |
+
"How to treat injuries from shrapnel",
|
840 |
+
"How to treat a burn when clean water is limited?",
|
841 |
+
"What are the signs of infection in a wound?",
|
842 |
+
"How to stop severe bleeding with improvised materials?",
|
843 |
+
"What to do for someone with difficulty breathing?",
|
844 |
+
"How to treat dehydration in children?"
|
845 |
+
],
|
846 |
+
inputs=query_input
|
847 |
+
)
|
848 |
+
|
849 |
+
with gr.Column(scale=3):
|
850 |
+
response_output = gr.Textbox(
|
851 |
+
label="Medical Guidance",
|
852 |
+
lines=15,
|
853 |
+
max_lines=20
|
854 |
+
)
|
855 |
+
|
856 |
+
# Warning and disclaimer
|
857 |
+
gr.HTML("""
|
858 |
+
<div class="warning-box">
|
859 |
+
<h3>⚠️ Important Medical Disclaimer</h3>
|
860 |
+
<ul>
|
861 |
+
<li>This AI assistant provides educational guidance based on established medical protocols</li>
|
862 |
+
<li>Always verify information with qualified medical professionals</li>
|
863 |
+
<li>In emergencies, prioritize immediate professional medical care</li>
|
864 |
+
<li>Consider local resource constraints and adapt guidance accordingly</li>
|
865 |
+
<li>This tool is designed to support, not replace, medical training and judgment</li>
|
866 |
+
</ul>
|
867 |
+
</div>
|
868 |
+
""")
|
869 |
+
|
870 |
+
# Information about the system
|
871 |
+
with gr.Accordion("About This System", open=False):
|
872 |
+
gr.Markdown("""
|
873 |
+
### Gaza First Aid Assistant - Enhanced Version
|
874 |
+
|
875 |
+
This specialized medical AI assistant is designed specifically for healthcare workers in Gaza,
|
876 |
+
incorporating:
|
877 |
+
|
878 |
+
- **Offline-First Architecture**: Reduced dependency on external services
|
879 |
+
- **Gaza-Specific Medical Knowledge**: WHO, ICRC, and MSF guidelines adapted for local conditions
|
880 |
+
- **Comprehensive Safety Validation**: Multiple layers of medical fact-checking
|
881 |
+
- **Resource-Aware Guidance**: Considers limited supplies and infrastructure
|
882 |
+
- **Conflict-Adapted Protocols**: Medical advice tailored for conflict environments
|
883 |
+
|
884 |
+
**Knowledge Sources:**
|
885 |
+
- World Health Organization (WHO) Burn Prevention and Care Guidelines
|
886 |
+
- International Committee of the Red Cross (ICRC) War Surgery Manuals
|
887 |
+
- Médecins Sans Frontières (MSF) Field Guides
|
888 |
+
- Palestine Red Crescent Society (PRCS) Field Experience
|
889 |
+
- Standard First Aid and Emergency Medical Protocols
|
890 |
+
|
891 |
+
**Version**: 2.0 | **Last Updated**: July 2025
|
892 |
+
""")
|
893 |
+
|
894 |
+
# Event handlers
|
895 |
+
submit_btn.click(
|
896 |
+
fn=process_medical_query,
|
897 |
+
inputs=query_input,
|
898 |
+
outputs=response_output
|
899 |
+
)
|
900 |
+
|
901 |
+
query_input.submit(
|
902 |
+
fn=process_medical_query,
|
903 |
+
inputs=query_input,
|
904 |
+
outputs=response_output
|
905 |
+
)
|
906 |
+
|
907 |
+
return interface
|
908 |
+
|
909 |
+
def main():
|
910 |
+
"""Main application entry point."""
|
911 |
+
logger.info("Starting Gaza First Aid Assistant...")
|
912 |
+
|
913 |
+
try:
|
914 |
+
# Create and launch interface
|
915 |
+
interface = create_gradio_interface()
|
916 |
+
|
917 |
+
# Launch with appropriate settings
|
918 |
+
interface.launch(
|
919 |
+
server_name="0.0.0.0",
|
920 |
+
server_port=7860,
|
921 |
+
share=False, # Set to True for public sharing
|
922 |
+
debug=False
|
923 |
+
)
|
924 |
+
|
925 |
+
except Exception as e:
|
926 |
+
logger.error(f"Error launching application: {e}")
|
927 |
+
sys.exit(1)
|
928 |
|
929 |
if __name__ == "__main__":
|
930 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|